Skip to main content

Spatial search on Johnson graphs by continuous-time quantum walk

Abstract

Spatial search on graphs is one of the most important algorithmic applications of quantum walks. To show that a quantum-walk-based search is more efficient than a random-walk-based search is a difficult problem, which has been addressed in several ways. Usually, graph symmetries aid in the calculation of the algorithm’s computational complexity, and Johnson graphs are an interesting class regarding symmetries because they are regular, Hamilton-connected, vertex- and distance-transitive. In this work, we show that spatial search on Johnson graphs by continuous-time quantum walk achieves the Grover lower bound \(\pi \sqrt{N}/2\) with success probability 1 asymptotically for every fixed diameter, where N is the number of vertices. The proof is mathematically rigorous and can be used for other graph classes.

This is a preview of subscription content, access via your institution.

References

  1. Farhi, E., Gutmann, S.: Quantum computation and decision trees. Phys. Rev. A 58, 915–928 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  2. Farhi, E., Goldstone, J., Gutmann, S.: A quantum algorithm for the Hamiltonian NAND tree. Theory Comput. 4(8), 169–190 (2008)

    Article  MathSciNet  Google Scholar 

  3. Childs, A.M., Cleve, R., Deotto, E., Farhi, E., Gutmann, S., Spielman, D.A.: Exponential algorithmic speedup by a quantum walk. In: Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, STOC ’03, New York, NY, USA, pp. 59–68. Association for Computing Machinery (2003)

  4. Konno, N.: Limit theorem for continuous-time quantum walk on the line. Phys. Rev. E 72, 026113 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  5. Konno, N.: Continuous-time quantum walks on trees in quantum probability theory. Infinite Dimens. Anal. Quantum Probab. Relat. Top. 09(02), 287–297 (2006)

    Article  MathSciNet  Google Scholar 

  6. Mülken, O., Blumen, A.: Continuous-time quantum walks: models for coherent transport on complex networks. Phys. Rep. 502(2), 37–87 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  7. Razzoli, L., Paris, M.G.A., Bordone, P.: Transport efficiency of continuous-time quantum walks on graphs. Entropy 23(1), 85 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  8. Benedetti, C., Rossi, M.A.C., Paris, M.G.A.: Continuous-time quantum walks on dynamical percolation graphs. EPL Europhys. Lett. 124(6), 60001 (2019)

    Article  Google Scholar 

  9. Delvecchio, M., Petiziol, F., Wimberger, S.: Resonant quantum kicked rotor as a continuous-time quantum walk. Condens. Matter 5(1), 4 (2020)

    Article  Google Scholar 

  10. Benioff, P.: Space Searches with a Quantum Robot. AMS Contemporary Mathematics Series, vol. 305. American Mathematical Society, Providence (2002)

    MATH  Google Scholar 

  11. Childs, A.M., Goldstone, J.: Spatial search by quantum walk. Phys. Rev. A 70, 022314 (2004)

    Article  ADS  Google Scholar 

  12. Novo, L., Chakraborty, S., Mohseni, M., Neven, H., Omar, Y.: Systematic dimensionality reduction for quantum walks: optimal spatial search and transport on non-regular graphs. Sci. Rep. 5(1), 13304 (2015)

    Article  ADS  Google Scholar 

  13. Chakraborty, S., Novo, L., Ambainis, A., Omar, Y.: Spatial search by quantum walk is optimal for almost all graphs. Phys. Rev. Lett. 116, 100501 (2016)

    Article  ADS  Google Scholar 

  14. Agliari, E., Blumen, A., Mülken, O.: Quantum-walk approach to searching on fractal structures. Phys. Rev. A 82, 012305 (2010)

    Article  ADS  Google Scholar 

  15. Philipp, P., Tarrataca, L., Boettcher, S.: Continuous-time quantum search on balanced trees. Phys. Rev. A 93, 032305 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  16. Osada, T., Coutinho, B., Omar, Y., Sanaka, K., Munro, W.J., Nemoto, K.: Continuous-time quantum-walk spatial search on the Bollobás scale-free network. Phys. Rev. A 101, 022310 (2020)

    Article  ADS  Google Scholar 

  17. Delvecchio, M., Groiseau, C., Petiziol, F., Summy, G.S., Wimberger, S.: Quantum search with a continuous-time quantum walk in momentum space. J. Phys. B At. Mol. Opt. Phys. 53(6), 065301 (2020)

    Article  ADS  Google Scholar 

  18. Dadras, S., Gresch, A., Groiseau, C., Wimberger, S., Summy, G.S.: Experimental realization of a momentum-space quantum walk. Phys. Rev. A 99, 043617 (2019)

    Article  ADS  Google Scholar 

  19. Wong, T.G.: Quantum walk search on Johnson graphs. J. Phys. A Math. Theor. 49(19), 195303 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  20. Xue, X., Ruan, Y., Liu, Z.: Discrete-time quantum walk search on Johnson graphs. Quantum Inf. Process. 18(2), 50 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  21. Andrade, F.M., da Luz, M.G.E.: Equivalence between discrete quantum walk models in arbitrary topologies. Phys. Rev. A 80, 052301 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  22. Brouwer, A.E., Cohen, A.M., Neumaier, A.: Distance-Regular Graphs. Modern Surveys in Mathematics. Springer, Berlin (1989)

    Book  Google Scholar 

  23. van Dam, E.R., Koolen, J.H., Tanaka, H.: Distance-regular graphs. Electron. J. Combin. Dyn. Surv. 22 1–156 (2016)

  24. Janmark, J., Meyer, D.A., Wong, T.G.: Global symmetry is unnecessary for fast quantum search. Phys. Rev. Lett. 112, 210502 (2014)

    Article  ADS  Google Scholar 

  25. Krantz, S.G.: Function Theory of Several Complex Variables, 2nd edn. AMS Chelsea Publishing, Providence (1992)

    MATH  Google Scholar 

  26. Wilcox, R.M.: Exponential operators and parameter differentiation in quantum physics. J. Math. Phys. 8(4), 962–982 (1967)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous referees for providing valuable comments. The work of H. Tanaka was supported by JSPS KAKENHI Grant Number JP20K03551. The work of R. Portugal was supported by FAPERJ Grant Number CNE E-26/202.872/2018 and CNPq Grant Number 308923/2019-7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato Portugal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tanaka, H., Sabri, M. & Portugal, R. Spatial search on Johnson graphs by continuous-time quantum walk. Quantum Inf Process 21, 74 (2022). https://doi.org/10.1007/s11128-022-03417-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03417-9

Keywords

  • Continuous-time quantum walk
  • Spatial quantum search
  • Johnson graph