Skip to main content
Log in

Evaluation of Grover’s algorithm toward quantum cryptanalysis on ChaCha

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this work, we have analyzed ChaCha against Grover’s search algorithm. We designed a reversible quantum circuit of ChaCha and then estimated the resources required to implement Grover. We showed that for MAXDEPTH = \( 2^{40} \), the ChaCha20 256-bit key can be recovered using Grover’s search algorithm with a gate count of \( 1.233 \cdot 2^{251} \), which is less than the NIST’s requirement of \( 2^{258} \). We also showed that implementing Grover’s algorithm greatly depends on the number of rounds in ChaCha. We deduced that ChaCha would require approximately 166 rounds so that implementing a non parallelized Grover would require a \( 2^{298} \) gate count. We implemented a ChaCha-like toy cipher in IBMQ simulator and recovered key using Grover’s algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Anand, R., Maitra, A., Mukhopadhyay, S.: Grover on SIMON. Quantum Inf. Process. 19(9), 1–17 (2020). https://doi.org/10.1007/s11128-020-02844-w

    Article  MathSciNet  Google Scholar 

  2. Anand, R., Maitra, A., Mukhopadhyay, S.: Evaluation of quantum cryptanalysis on SPECK. In: Bhargavan, K., Oswald, E., Prabhakaran, M. (eds.) Progress in Cryptology INDOCRYPT 2020. LNCS, vol. 12578. Springer, Cham (2020). https://doi.org/10.1007/ 978-3-030-65277-7_18

  3. Anand, R., Maitra, S., Maitra, A., Mukherjee, C.S., Mukhopadhyay, S.: Resource estimation of Grovers-kind quantum cryptanalysis against FSR based symmetric ciphers. Cryptology ePrint Archive, Report 2020/1438, https://eprint.iacr.org/2020/1438 (2020)

  4. Amy, M., Maslov, D., Mosca, M., Roetteler, M.: A meet-in-the-middle algorithm for fast synthesis of depth-optimal quantum circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 32(6), 818–830 (2013). https://doi.org/10.1109/TCAD.2013.2244643

    Article  Google Scholar 

  5. Aumasson, J.P., Fischer, S., Khazaei, S., Meier, W., Rechberger, C.: New features of Latin dances: analysis of Salsa, ChaCha, and Rumba. In: Nyberg, K. (ed.) Fast Software Encryption. FSE 2008. Lecture Notes in Computer Science, vol. 5086. Springer, Berlin (2008). https://doi.org/10.1007/978-3-540-71039-4_30

    Chapter  Google Scholar 

  6. Aumasson, J.P.: Too much crypto. IACR Cryptol. ePrint Arch., p.1492 (2019). https://eprint.iacr.org/2019/1492

  7. Bernstein, D.J.: ChaCha, a variant of Salsa20. In: Workshop Record of SASC, vol. 8, pp. 3–5 (2008)

  8. Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching. Fortschritte der Physik: Progress of Physics 46(4–5), 493–505 (1998)

    Article  Google Scholar 

  9. Choudhuri, A., Maitra, S.: Differential cryptanalysis of salsa and ChaCha: An evaluation with a hybrid model. Cryptology ePrint Archive: Report 2016/377, (2016)

  10. Davenport, J.H., Pring, B.: Improvements to quantum search techniques for block-ciphers, with applications to AES. In: Selected Areas in Cryptography-SAC (2020)

  11. Dey, S., Sarkar, S.: Improved analysis for reduced round Salsa and Chacha. Discrete Appl. Math. 227, 58–69 (2017). https://doi.org/10.1016/j.dam.2017.04.034

    Article  MathSciNet  MATH  Google Scholar 

  12. Jaques, S., Naehrig, M., Roetteler, M. and Virdia, F.: Implementing Grover oracles for quantum key search on AES and LowMC. Advances in Cryptology—EUROCRYPT 2020, volume 12106 of Lecture Notes in Computer Science, pp. 280–310. Springer (2020)

  13. Kim, P., Han, D., Jeong, K.C.: Time-space complexity of quantum search algorithms in symmetric cryptanalysis: applying to AES and SHA-2. Quantum Inf. Process. 17(12), 1–39 (2018)

    Article  MathSciNet  Google Scholar 

  14. Langenberg, B., Pham, H., Steinwandt, R.: Reducing the cost of implementing the advanced encryption standard as a quantum circuit. IEEE Trans. Quantum Eng. 1, 1–12 (2020). https://doi.org/10.1109/TQE.2020.2965697

    Article  Google Scholar 

  15. Maitra, S.: Chosen IV cryptanalysis on reduced round ChaCha and Salsa. Discrete Appl. Math. 208, 88–97 (2016)

    Article  MathSciNet  Google Scholar 

  16. Maitra, S., Paul, G., Meier, W.: Salsa20 cryptanalysis: new moves and revisiting old styles. In: The 9th International Workshop on Coding and Cryptography 2015 WCC2015, Anne Canteaut, Gaëtan Leurent, Maria Naya-Plasencia, Paris, France. ffhal-01276506f (2015)

  17. Grassl, M., Langenberg, B., Roetteler, M., Steinwandt, R.: Applying Grover’s algorithm to AES: quantum resource estimates. In: Takagi, T. (ed.) Post-quantum Cryptography. PQCrypto. Lecture Notes in Computer Science, vol. 9606, pp. 29–43. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29360-8_3

  18. Ramos-Calderer, S., Bellini, E., Latorre, J.I., Manzano, M., Mateu, V.: Quantum search for scaled hash function preimages. arXiv preprint arXiv:2009.00621. (2020)

  19. Shi, Z., Zhang, B., Feng, D., Wu, W.: Improved key recovery attacks on reduced-round Salsa20 and ChaCha. In: Information Security and Cryptology—ICISC, pp. 337–351 (2012)

  20. Takahashi, Y., Tani, S., Kunihiro, N.: Quantum addition circuits and unbounded fan-out. Quantum Inf. Comput. 10(9), 872–890 (2010)

    MathSciNet  MATH  Google Scholar 

  21. NIST. Submission requirements and evaluation criteria for the post-quantum cryptography standardization process (2016). https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf

  22. Wiebe, N., Roetteler, M.: Quantum arithmetic and numerical analysis using repeat-until-success circuits. Quantum Inf. Comput. 16(1–2), 134–178 (2014)

    MathSciNet  Google Scholar 

  23. https://github.com/raviro/chacha

Download references

Funding

Not Applicable.

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bathe, B., Anand, R. & Dutta, S. Evaluation of Grover’s algorithm toward quantum cryptanalysis on ChaCha. Quantum Inf Process 20, 394 (2021). https://doi.org/10.1007/s11128-021-03322-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03322-7

Keywords

Navigation