Skip to main content
Log in

Combining quantum key distribution with chaotic systems for free-space optical communications

  • Published:
Quantum Information Processing Aims and scope Submit manuscript


In this work, we propose a free-space optical (FSO) communication system that combines chaotic communications with quantum key distribution (QKD) to achieve greater security and range compared to existing FSO techniques such as N-slit interferometers. We utilize Lorenz chaotic transmitter and receiver models, which are inherently auto-synchronizable, to generate chaotic signals used as data carriers. Data are transmitted securely over a classical channel using the Lorenz chaotic communication system, while a quantum channel is used for securely exchanging critical synchronization parameters via a combination of QKD and public-key cryptography protocols. Because FSO communications have been utilized by spaces agencies including NASA and ESA, we provide a concept of operations for a space mission combining chaotic communications and QKD to achieve an end-to-end encrypted deep-space optical communications link. Our experimental work includes successful real-time transmission of high-resolution single-spectral and multi-spectral images, measurement of bit-error-rate over a range of noise levels, and an evaluation of security and robustness of transmissions with dynamic reconfiguration of the chaotic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others


  1. Edwards, B.: Overview of the laser communications relay demonstration project. In SpaceOps 2012 Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, jun 2012, Last Accessed on October, 2020 (2012)

  2. Mohon, L.: ‘Laser communications relay demonstration (lcrd). Jul 2015, Last Accessed on October 2020 (2015)

  3. Nasa laser communications mission passes major review milestone. Jul 2015, Last Accessed: October 2020 (2015)

  4. Ghassemlooy, Z., Popoola, W., Rajbhandari, S.: Optical Wireless Communications: System and Channel Modelling with MATLAB, 1st edn. CRC Press Inc, USA (2012)

    Google Scholar 

  5. Kaushal, H., and Kaddoum, G.: Free space optical communication: challenges and mitigation techniques. arXiv preprint arXiv:1506.04836, (2015)

  6. Duarte, F.: Secure interferometric communications in free space. Opt. Commun. 205(4–6), 313–319 (2002)

    Article  ADS  Google Scholar 

  7. Duarte, F.J.: Secure interferometric communications in free space: enhanced sensitivity for propagation in the metre range. J. Opt. A Pure Appl. Opt. 7(1), 73–75 (2005)

    Article  ADS  Google Scholar 

  8. Duarte, F.J., Taylor, T.S., Black, A.M., Davenport, W.E., Varmette, P.G.: N -slit interferometer for secure free-space optical communications: 527 m intra interferometric path length. J. Opt. 13(3), 035710 (2011)

    Article  ADS  Google Scholar 

  9. Duarte, F.J., Taylor, T.S.: Quantum entanglement physics secures space-to-space interferometric communications. Laser Focus World 51, 54–58 (2015)

    Google Scholar 

  10. Boroson, D.: Optical communications: a compendium of signal formats, receiver architectures, analysis mathematics, and performance characteristics. Defense Technical Information Center (DTIC), Tech. Rep., 2005, Last Accessed: October 2020 (2005)

  11. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmosp. Sci. 20(2), 130–141 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  12. Riaz, A., Ali, M.: Chaotic Communications, their applications and advantages over traditional methods of communication. In 2008 6th international symposium on communication systems, networks and digital signal processing. IEEE, jul 2008, pp. 21–24, Last Accessed: October 2020 (2008)

  13. Mehtap, T., Oğraş, H.: Performing modulation scheme of Chaos shift keying with hyperchaotic chen system. In Proceedings of the 6th international advanced technologies symposium (IATS’11) (2011)

  14. Shiu, D.-S., Kahn, J.M.: Differential pulse-position modulation for power-efficient optical communication. IEEE Trans. Commun. 47(8), 1201–1210 (1999)

    Article  Google Scholar 

  15. Stallings, W.: Cryptography and Network Security: Principles and Practice, 6th edn. Pearson, Upper Saddle River (2013)

    Google Scholar 

  16. Amin, M.H., Dickson, N.G., Smith, P.: Adiabatic quantum optimization with qudits. Quantum Inf Process 12, 1819 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  17. Ibm quantum experience. Last Accessed: October 2020

  18. Xu, N., Zhu, J., Lu, D., Zhou, X., Peng, X., Du, J.: Quantum factorization of 143 on a dipolar-coupling nuclear magnetic resonance system. Phys. Rev. Lett. 108(13), 130501 (2012).

    Article  ADS  Google Scholar 

  19. Dattani, N. S., and Bryans, N.: Quantum factorization of 56153 with only 4 qubits. Last Accessed on October 2020 (2014)

  20. Shor, P.: Algorithms for quantum computation: discrete logarithms and factoring. In Proceedings 35th annual symposium on foundations of computer science. IEEE Comput. Soc. Press, pp. 124–134, Last Accessed: October 2020 (1994)

  21. Cerf, N.J., Bourennane, M., Karlsson, A., Gisin, N.: Security of quantum key distribution using d-level systems. Phys. Rev. Lett. 88(12), 127902 (2002).

  22. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000).

    Article  ADS  Google Scholar 

  23. Zhao, Y., Fung, C.-H.F., Qi, B., Chen, C., Lo, H.-K.: Quantum hacking: experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Phys. Rev. A 78(4), 042333 (2008).

    Article  ADS  Google Scholar 

  24. Hubbard, W.: Ice giants decadal study. Vis. Voyag. Planet. Sci. Decade 2013(2022), 1–40 (2010)

    Google Scholar 

  25. Mahmud, N., El-Araby, E., Shaw, H., and Cooper, L.: Securing and auto-synchronizing communication over free-space optics using quantum key distribution and chaotic systems. In Quantum communications and quantum imaging XVI. vol. 10771. International society for optics and photonics. 107710U (2018)

  26. Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64(8), 821–824 (1990).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  27. Carroll, T., Pecora, L.: Synchronizing chaotic circuits. IEEE Trans. Circuits Syst. 38(4), 453–456 (1991)

    Article  Google Scholar 

  28. Pecora, L.M., Carroll, T.L.: Driving systems with chaotic signals. Phys. Rev. A 44(4), 2374–2383 (1991)

    Article  ADS  Google Scholar 

  29. Cuomo, K.M., Oppenheim, A.V.: Circuit implementation of synchronized chaos with applications to communications. Phys. Rev. Lett. 71(1), 65–68 (1993)

    Article  ADS  Google Scholar 

  30. Cuomo, K. M.: Analysis and synthesis of self-synchronizing chaotic systems. Ph.D. dissertation, Massachusetts Institute of Technology (1994)

  31. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560, 7–11 (2014)

    Article  MathSciNet  Google Scholar 

  32. Yang, T.: A survey of chaotic secure communication systems. Int. J. Comp. Cognit. 2, 81–130 (2004)

    Google Scholar 

  33. Argyris, A., Syvridis, D., Larger, L., Annovazzi-Lodi, V., Colet, P., Fischer, I., García-Ojalvo, J., Mirasso, C.R., Pesquera, L., Shore, K.A.: Chaos-based communications at high bit rates using commercial fibre-optic links. Nature 438(7066), 343–346 (2005)

    Article  ADS  Google Scholar 

  34. Illing, L.: Digital communication using chaos and nonlinear dynamics. Nonlinear Anal. Theory Methods Appl. 71(12), e2958–e2964 (2009)

    Article  Google Scholar 

  35. Zaher, A.A., Abu-Rezq, A.: On the design of chaos-based secure communication systems. Commun. Nonlinear Sci. Numer. Simul. 16(9), 3721–3737 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  36. Kapitaniak, T., Maistrenko, Y., Grebogi, C.: Bubbling and riddling of higher-dimensional attractors. Chaos Solitons Fractals 17(1), 61–66 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  37. Annovazzi-Lodi, V., Aromataris, G., Benedetti, M., Merlo, S.: Secure chaotic transmission on a free-space optics data link. IEEE J. Quantum Electron. 44(11), 1089–1095 (2008)

    Article  ADS  Google Scholar 

  38. Lang, R., Kobayashi, K.: External optical feedback effects on semiconductor injection laser properties. IEEE J. Quantum Electron. 16(3), 347–355 (1980)

    Article  ADS  Google Scholar 

  39. Marcikic, I., Lamas-Linares, A., Kurtsiefer, C.: Free-space quantum key distribution with entangled photons. Appl. Phys. Lett. 89(10), 101122 (2006).

    Article  ADS  Google Scholar 

  40. Schmitt-Manderbach, T., Weier, H., Fürst, M., Ursin, R., Tiefenbacher, F., Scheidl, T., Perdigues, J., Sodnik, Z., Kurtsiefer, C., Rarity, J.G., Zeilinger, A., Weinfurter, H.: Experimental demonstration of free-space decoy-state quantum key distribution over 144 km. Phys. Rev. Lett. 98(1), 010504 (2007).

    Article  ADS  Google Scholar 

  41. Hughes, R.J., Nordholt, J.E., Derkacs, D., Peterson, C.G.: Practical free-space quantum key distribution over 10 km in daylight and at night. New J. Phys. 4, 43–43 (2002)

    Article  ADS  Google Scholar 

  42. Kupferman, J., Arnon, S.: Zero-error attacks on a quantum key distribution fso system. OSA Contin. 1(3), 1079–1086 (2018)

    Article  Google Scholar 

  43. Trinh, P.V., Pham, T.V., Dang, N.T., Nguyen, H.V., Ng, S.X., Pham, A.T.: Design and security analysis of quantum key distribution protocol over free-space optics using dual-threshold direct-detection receiver. IEEE Access 6, 4159–4175 (2018)

    Article  Google Scholar 

  44. Jiang, D., Chen, Y., Gu, X., Xie, L., Chen, L.: Efficient and universal quantum key distribution based on chaos and middleware. Int. J. Mod. Phys. B 31(2), 1650264 (2017)

    Article  ADS  Google Scholar 

  45. Cho, K., Miyano, T.: Chaotic cryptography using augmented lorenz equations aided by quantum key distribution. IEEE Trans. Circuits Syst. I Regul. Pap. 62(2), 478–487 (2015)

    Article  Google Scholar 

  46. Boroson, D., Robinson, B., Burianek, D., Murphy, D., and Khatri, D.: The lunar laser communication demonstration (llcd)., Last Accessed: October, 2020 (2014)

  47. Grace (gravity recovery and climate experiment). Last Accessed: October 2020

  48. Li, H.-W., Yin, Z.-Q., Wang, S., Qian, Y.-J., Chen, W., Guo, G.-C., Han, Z.-F.: Randomness determines practical security of BB84 quantum key distribution. Sci. Rep. 5(1), 16200 (2015)

    Article  ADS  Google Scholar 

  49. NIST Special Publication 800-53 Revision 4. Security and privacy controls for federal information systems and organizations

  50. Nascimento, S.M., Amano, K., Foster, D.H.: Spatial distributions of local illumination color in natural scenes. Vision. Res. 120, 39–44 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Naveed Mahmud.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmud, N., MacGillivray, A., Rai, A. et al. Combining quantum key distribution with chaotic systems for free-space optical communications. Quantum Inf Process 20, 354 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: