Skip to main content
Log in

T-count optimized quantum circuit for floating point addition and multiplication

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum computers perform computations using quantum-mechanical phenomena such as superposition and entanglement. Floating-point operations are employed in almost all conventional digital signal processors which evinces that floating-point numbers can be a viable candidate to be deployed with quantum information processing systems. In this paper, a T-count and T-depth optimized quantum floating-point addition and multiplication circuit are proposed. This work centers around improving the current structures of multi-qubit magnitude comparator, subtractor, leading zero detector, and reduces T-count and T-depth use by huge sum when contrasted with the existing works. The whole architecture of the quantum floating-point adder and multiplier is constructed using the aforementioned primary structures. The proposed quantum floating-point adder offers a T-count savings of 92.79\(\%\) over the existing work and T-depth improvement over 49.03 \(\%\) and 85.69 \(\%\) over the existing works by Nguyen and Van Meter (A space-efficient design for reversible floating point adder in quantum computing. arXiv:1306.3760) and Haener et al. (in: International conference on reversible computation, Springer, pp 162–174, 2018) respectively. The proposed structure shows an improvement of 82.74 \(\%\) and 71.58 \(\%\) in circuit size KQ reported in Nguyen and Van Meter and Haener et al. (2018) respectively despite quite larger ancilla than the hand-optimized circuit by Haener et al. (2018). The T-count and T-depth improvement of the proposed floating-point multiplier is around 93.87\(\%\) and circuit size KQ improvement is around 78.49\(\%\) than the existing quantum floating point circuit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Liu, W., Wu, Q., Shen, J., Zhao, J., Zidan, M., Tong, L.: An optimized quantum minimum searching algorithm with sure-success probability and its experiment simulation with Cirq. J. Ambient Intell. Humaniz. Comput. 12, 1–10 (2021). https://doi.org/10.1007/s12652-020-02840-z

  2. Zidan, M.: A novel quantum computing model based on entanglement degree. Mod. Phys. Lett. B 34(35), 2050401 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  3. Zidan, M., Eleuch, H., Abdel-Aty, M.: Non-classical computing problems: toward novel type of quantum computing problems. Results Phys. 21, 103536 (2021)

    Article  Google Scholar 

  4. Zidan, M., Abdel-Aty, A.-H., Nguyen, D.M., Mohamed, A.S., Al-Sbou, Y., Eleuch, H., Abdel-Aty, M.: A quantum algorithm based on entanglement measure for classifying Boolean multivariate function into novel hidden classes. Results Phys. 15, 102549 (2019)

    Article  Google Scholar 

  5. Nguyen, D.M., Kim, S.: Quantum key distribution protocol based on modified generalization of Deutsch–Jozsa algorithm in d-level quantum system. Int. J. Theor. Phys. 58(1), 71–82 (2019)

    Article  Google Scholar 

  6. Tsai, C.-W., Lin, J., Yang, C.-W.: Cryptanalysis and improvement in semi-quantum private comparison based on Bell states. Quantum Inf. Process. 20(3), 1–14 (2021)

    Article  MathSciNet  Google Scholar 

  7. Sagheer, A., Zidan, M., Abdelsamea, M.M.: A novel autonomous perceptron model for pattern classification applications. Entropy 21(8), 763 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  8. Zidan, M., Abdel-Aty, A.-H., El-Sadek, A., Zanaty, E., Abdel-Aty, M.: Low-cost autonomous perceptron neural network inspired by quantum computation. In: AIP Conference Proceedings, vol. 1905, AIP Publishing LLC, p. 020005 (2017)

  9. Zidan, M., Abdel-Aty, A.-H., El-shafei, M., Feraig, M., Al-Sbou, Y., Eleuch, H., Abdel-Aty, M.: Quantum classification algorithm based on competitive learning neural network and entanglement measure. Appl. Sci. 9(7), 1277 (2019)

    Article  Google Scholar 

  10. Abdel-Aty, A.-H., Kadry, H., Zidan, M., Al-Sbou, Y., Zanaty, E., Abdel-Aty, M.: A quantum classification algorithm for classification incomplete patterns based on entanglement measure. J. Intell. Fuzzy Syst. 38(3), 2809–2816 (2020)

    Article  Google Scholar 

  11. Muñoz-Coreas, E., Thapliyal, H.: Design of quantum circuits for cryptanalysis and image processing applications. In: 2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pp. 360–365. IEEE (2019)

  12. Andrés-Martínez, P., Heunen, C.: Automated distribution of quantum circuits via hypergraph partitioning. Phys. Rev. A 100(3), 032308 (2019)

    Article  ADS  Google Scholar 

  13. Dumitrescu, E.F., McCaskey, A.J., Hagen, G., Jansen, G.R., Morris, T.D., Papenbrock, T., Pooser, R.C., Dean, D.J., Lougovski, P.: Cloud quantum computing of an atomic nucleus. Phys. Rev. Lett. 120(21), 210501 (2018)

    Article  ADS  Google Scholar 

  14. De Wolf, R.: The potential impact of quantum computers on society. Ethics Inf. Technol. 19(4), 271–276 (2017)

    Article  Google Scholar 

  15. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bells theorem. Phys. Rev. Lett. 68(5), 557 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  16. Muller JM. et al. (2010) Hardware Implementation of Floating-Point Arithmetic. In: Handbook of Floating-Point Arithmetic. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4705-6_9

  17. Deschamps, J.-P., Sutter, G.D., Cantó, E.: Guide to FPGA Implementation of Arithmetic Functions, vol. 149. Springer, Berlin (2012)

    Book  Google Scholar 

  18. Funke S. (2009) Of What Use Is Floating-Point Arithmetic in Computational Geometry?. In: Albers S., Alt H., Näher S. (eds) Efficient Algorithms. Lecture Notes in Computer Science, vol 5760. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03456-5_23 (2009)

  19. Papageorgiou, A., Traub, J.: Quantum algorithms for continuous problems and their applications. Quantum Inf. Comput. Chem. 154, 151–178 (2014)

  20. Muñoz-Coreas, E., Thapliyal, H.: Quantum circuit design of a t-count optimized integer multiplier. IEEE Trans. Comput. 68(5), 729–739 (2018)

    Article  MathSciNet  Google Scholar 

  21. Li, R., Alvarez-Rodriguez, U., Lamata, L., Solano, E.: Approximate quantum adders with genetic algorithms: an IBM quantum experience. Quantum Meas. Quantum Metrol. 4(1), 1–7 (2017)

    Article  ADS  Google Scholar 

  22. Draper, T.G., Kutin, S.A., Rains, E.M., Svore, K.M.: A logarithmic-depth quantum carry-lookahead adder. arXiv:0406.142 [quant-ph]

  23. Munoz-Coreas, E., Thapliyal, H.: T-count and qubit optimized quantum circuit design of the non-restoring square root algorithm. ACM J. Emerg. Technol. Comput. Syst.: JETC 14(3), 1–15 (2018)

    Article  Google Scholar 

  24. Bhaskar, M.K., Hadfield, S., Papageorgiou, A., Petras, I.: Quantum algorithms and circuits for scientific computing. arXiv:1511.08253

  25. Amy, M., Maslov, D., Mosca, M.: Polynomial-time T-depth optimization of Clifford+ T circuits via matroid partitioning. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 33(10), 1476–1489 (2014)

    Article  Google Scholar 

  26. Amy, M., Maslov, D., Mosca, M., Roetteler, M.: A meet-in-the-middle algorithm for fast synthesis of depth-optimal quantum circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 32(6), 818–830 (2013)

    Article  Google Scholar 

  27. Devitt, S., Stephens, A., Munro, W., Nemoto, K.: Requirements for fault-tolerant factoring on an atom-optics quantum computer. Nat Commun 4, 1–8 (2013)

    Article  Google Scholar 

  28. Paler, A., Polian, I., Nemoto, K., Devitt, S.J.: Fault-tolerant, high-level quantum circuits: form, compilation and description. Quantum Sci. Technol. 2(2), 025003 (2017). https://doi.org/10.1088/2058-9565/aa66eb

    Article  ADS  Google Scholar 

  29. Zhou, X., Leung, D.W., Chuang, I.L.: Methodology for quantum logic gate construction. Phys. Rev. A 62(5), 052316 (2000)

    Article  ADS  Google Scholar 

  30. Cuccaro, S.A., Draper, T.G., Kutin, S.A., Moulton, D.P.: A new quantum ripple-carry addition circuit. arXiv:0410.184 [quant-ph]

  31. Takahashi, Y., Tani, S., Kunihiro, N.: Quantum addition circuits and unbounded fan-out. arXiv:0910.2530

  32. Kotiyal, S., Thapliyal, H., Ranganathan, N.: Circuit for reversible quantum multiplier based on binary tree optimizing ancilla and garbage bits. In: 2014 27th International Conference on VLSI Design and 2014 13th International Conference on Embedded Systems, pp. 545–550. IEEE (2014)

  33. Babu, H.M.H.: Cost-efficient design of a quantum multiplier-accumulator unit. Quantum Inf. Process. 16(1), 30 (2017)

    Article  ADS  Google Scholar 

  34. Dutta, S., Bhattacharjee, D., Chattopadhyay, A.: Quantum circuits for Toom–Cook multiplication. Phys. Rev. A 98(1), 012311 (2018)

    Article  ADS  Google Scholar 

  35. Dibbo, S.V., Babu, H.M.H., Jamal, L.: An efficient design technique of a quantum divider circuit, In: 2016 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2102–2105. IEEE (2016)

  36. Mohammadi, M., Gorgin, S., Mohammadi, M.: Design of non-restoring divider in quantum-dot cellular automata technology. IET Circuits Devices Syst. 11(2), 135–141 (2017)

    Article  Google Scholar 

  37. Thapliyal, H., Munoz-Coreas, E., Varun, T., Humble, T.: Quantum circuit designs of integer division optimizing T-count and T-depth. IEEE Trans. Emerg. Top. Comput 9(2), 1045–1056 (2021). https://doi.org/10.1109/TETC.2019.2910870

  38. Dutta, S., Tavva, Y., Bhattacharjee, D., Chattopadhyay, A.: Efficient quantum circuits for square-root and inverse square-root. In: 2020 33rd International Conference on VLSI Design and 2020 19th International Conference on Embedded Systems (VLSID), pp. 55–60. IEEE (2020)

  39. Nguyen, T.D., Van Meter, R.: A space-efficient design for reversible floating point adder in quantum computing. arXiv:1306.3760

  40. Haener, T., Soeken, M., Roetteler, M., Svore, K.M.: Quantum circuits for floating-point arithmetic. In: International Conference on Reversible Computation, pp. 162–174. Springer (2018)

  41. Gayathri, S., Kumar, R., Dhanalakshmi, S., Dooly, G., Duraibabu, D.B.: T-count optimized quantum circuit designs for single-precision floating-point division. Electronics 10(6), 703 (2021)

    Article  Google Scholar 

  42. Clader, B.D., Jacobs, B.C., Sprouse, C.R.: Quantum algorithm to calculate electromagnetic scattering cross sections. In: The Rochester Conferences on Coherence and Quantum Optics and the Quantum Information and Measurement meeting, OSA Technical Digest (online) (Optical Society of America, 2013), paper W6.26.

  43. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103(15), 150502 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  44. Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum algorithms for supervised and unsupervised machine learning. arXiv:1307.0411

  45. Jain, J., Agrawal, R.: Design and development of efficient reversible floating point arithmetic unit, In: 2015 Fifth International Conference on Communication Systems and Network Technologies, pp. 811–815. IEEE (2015)

  46. AnanthaLakshmi, A., Sudha, G.F.: A novel power efficient 0.64-GFlops fused 32-bit reversible floating point arithmetic unit architecture for digital signal processing applications. Microprocess. Microsyst. 51, 366–385 (2017)

    Article  Google Scholar 

  47. Kamaraj, A., Marichamy, P.: Design of fault-tolerant reversible floating point division. Inf. MIDEM 48(3), 161–172 (2018)

    Google Scholar 

  48. Wan, Z.: An algorithm to solve integer linear systems exactly using numerical methods. J. Symb. Comput. 41(6), 621–632 (2006)

    Article  MathSciNet  Google Scholar 

  49. Greene, B.R.: Lectures on quantum geometry. Nucl. Phys. B Proc. Suppl. 41(1–3), 92–150 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  50. Dervovic, D., Herbster, M., Mountney, P., Severini, S., Usher, N., Wossnig, L.: Quantum linear systems algorithms: a primer. arXiv:1802.08227

  51. Jones, N.C., Van Meter, R., Fowler, A.G., McMahon, P.L., Kim, J., Ladd, T.D., Yamamoto, Y.: Layered architecture for quantum computing. Phys. Rev. X 2(3), 031007 (2012)

    Google Scholar 

  52. Heyfron, L.E., Campbell, E.T.: An efficient quantum compiler that reduces T count. Quantum Sci. Technol. 4(1), 015004 (2018)

    Article  ADS  Google Scholar 

  53. Miller, D.M., Soeken, M., Drechsler, R.: Mapping NCV circuits to optimized Clifford+T circuits. In: International Conference on Reversible Computation, pp. 163–175. Springer (2014)

  54. Nielsen, M. A., Chuang, I. L. (2011). Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge

  55. Gidney, C.: Halving the cost of quantum addition. Quantum 2, 74 (2018)

    Article  Google Scholar 

  56. Montaser, R., Younes, A., Abdel-Aty, M.: New design of reversible full adder/subtractor using R gate. Int. J. Theor. Phys. 58(1), 167–183 (2019)

    Article  Google Scholar 

  57. Cheng, K.-W., Tseng, C.-C.: Quantum full adder and subtractor. Electron. Lett. 38(22), 1343–1344 (2002)

    Article  ADS  Google Scholar 

  58. Thapliyal, H., Ranganathan, N.: A new design of the reversible subtractor circuit. In: 2011 11th IEEE International Conference on Nanotechnology, pp. 1430–1435. IEEE (2011)

  59. Wang, D., Liu, Z.-H., Zhu, W.-N., Li, S.-Z.: Design of quantum comparator based on extended general Toffoli gates with multiple targets. Comput. Sci. 39(9), 302–306 (2012)

    Google Scholar 

  60. Al-Rabadi, A.N.: Closed-system quantum logic network implementation of the viterbi algorithm. Facta Univ. Ser. Electron. Energ. 22(1), 1–33 (2009)

    Article  MathSciNet  Google Scholar 

  61. Thapliyal, H., Ranganathan, N., Ferreira, R.: Design of a comparator tree based on reversible logic. In: 10th IEEE International Conference on Nanotechnology, pp. 1113–1116. IEEE (2010)

  62. Xia, H., Li, H., Zhang, H., Liang, Y., Xin, J.: Novel multi-bit quantum comparators and their application in image binarization. Quantum Inf. Process. 18(7), 229 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  63. Oliveira, D.S., Ramos, R.V.: Quantum bit string comparator: circuits and applications. Quantum Comput. Comput 7(1), 17–26 (2007)

    Google Scholar 

  64. Paidi, S., Sreerama, R., Neelima, K.: A novel high speed leading zero counter for floating point units. Int. J. Eng. Res. Appl.: IJERA 2(2), 1103–1105 (2012)

    Google Scholar 

  65. Häner, T., Jaques, S., Naehrig, M., Roetteler, M., Soeken, M.: Improved quantum circuits for elliptic curve discrete logarithms. In: International Conference on Post-Quantum Cryptography, pp. 425–444. Springer (2020)

  66. Wilde, M.M.: Quantum-shift-register circuits. Phys. Rev. A 79(6), 062325 (2009)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gayathri, S.S., Kumar, R., Dhanalakshmi, S. et al. T-count optimized quantum circuit for floating point addition and multiplication. Quantum Inf Process 20, 378 (2021). https://doi.org/10.1007/s11128-021-03296-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03296-6

Keywords

Navigation