Skip to main content
Log in

Reversible optical–microwave quantum conversion assisted by optomechanical dynamically dark modes

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose a dynamically dark-mode (DDM) scheme to realize the reversible quantum conversion between microwave and optical photons in an electro-optomechanical (EOM) model. It is shown that two DDMs appear at certain times during the dynamical evolution of the EOM model. It is demonstrated that the DDMs can induce two kinds of reversible and highly efficient quantum conversion between the microwave and optical fields, the conditional quantum conversion (CQC) and the entanglement-assisted quantum conversion (EAQC). The CQC happens at the condition of vanishing of the initial-state mean value of one of the microwave and optical fields and only depends on the coupling ratio of the system under consideration. The EAQC occurs in the presence of the initial-state entanglement between the microwave and optical fields. It is found that the EAQC can be manipulated by engineering the initial-state entanglement and the coupling ratio. It is indicated that it is possible to realize the entanglement-enhanced (or suppressed) quantum conversion through controlling the phase of the initial-state parameter. Our work highlights the power of generating reversible and highly efficient quantum conversion between microwave and optical photons by the DDMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zeuthen, E., Schliesser, A., Sørensen, A.S., Taylor, J.M.: Figures of merit for quantum transducers. Quantum Sci. Technol. 5, 034009 (2020)

    Article  ADS  Google Scholar 

  2. Lambert, N.J., Rueda, A., Sedlmeir, F., Schwefel, H.G.L.: Coherent conversion between microwave and optical photons-An overview of physical implementations. Adv. Quantum Technol. 3, 1900077 (2019)

    Article  Google Scholar 

  3. Lauk, N., Sinclair, N., Barzanjeh, S., Covey, J.P., Saffman, M., Spiropulu, M., Simon, C.: Perspectives on quantum transduction. Quantum Sci. Technol. 5, 020501 (2020)

    Article  ADS  Google Scholar 

  4. Kimble, H.J.: The quantum internet. Nature 453, 1023 (2008)

    Article  ADS  Google Scholar 

  5. Castelvecchi, D.: The quantum internet has arrived (and it hasn’t). Nature 554, 289 (2018)

  6. Reiserer, A., Rempe, G.: Cavity-based quantum networks with single atoms and optical photons. Rev. Mod. Phys. 87, 1379 (2015)

    Article  ADS  Google Scholar 

  7. Wehner, S., Elkouss, D., Hanson, R.: Quantum internet: Avision for the road ahead. Science 362, eaam9288 (2018)

    Article  ADS  MATH  Google Scholar 

  8. Dong, C., Wang, Y., Wang, H.: Optomechanical interfaces for hybrid quantum networks. Natl. Sci. Rev. 2, 510 (2015)

    Article  Google Scholar 

  9. Pirandola, S., Bardhan, B.R., Gehring, T., Weedbrook, C., Lloyd, S.: Advances in photonic quantum sensing. Nat. Photonics 12, 724 (2018)

    Article  ADS  Google Scholar 

  10. Maccone, L., Ren, C.L.: Quantum radar. Phys. Rev. Lett. 124, 200503 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  11. Sørensen, A.S., van der Wal, C.H., Childress, L.I., Lukin, M.D.: Capacitive coupling of atomic systems to mesoscopic conductors. Phys. Rev. Lett. 92, 063601 (2004)

    Article  ADS  Google Scholar 

  12. Tian, L., Rabl, P., Blatt, R., Zoller, P.: Interfacing quantum-optical and solid-state qubits. Phys. Rev. Lett. 92, 247902 (2004)

    Article  ADS  Google Scholar 

  13. Rabl, P., DeMille, D., Doyle, J.M., Lukin, M.D., Schoelkopf, R.J., Zoller, P.: Hybrid quantum processors: molecular ensembles as quantum memory for solid state circuits. Phys. Rev. Lett. 97, 033003 (2006)

    Article  ADS  Google Scholar 

  14. O’Brien, C., Lauk, N., Blum, S., Morigi, G., Fleischhauer, M.: Interfacing superconducting qubits and telecom photons via a rare-earth-doped crystal. Phys. Rev. Lett. 113, 063603 (2014)

  15. Xia, K., Twamley, J.: Solid-state optical interconnect between distant superconducting quantum chips. Phys. Rev. A 91, 042307 (2015)

    Article  ADS  Google Scholar 

  16. Das, S., Elfving, V.E., Faez, S., Sørensen, A.S.: Interfacing superconducting qubits and single optical photons using molecules in waveguides. Phys. Rev. Lett. 118, 140501 (2017)

    Article  ADS  Google Scholar 

  17. Gard, B.T., Jacobs, K., McDermot, R., Saffman, M.: Microwave-to-optical frequency conversion using a cesium atom coupled to a superconducting resonator. Phys. Rev. A 96, 013833 (2017)

    Article  ADS  Google Scholar 

  18. Lekavicius, I., Golter, D.A., Oo, T., Wang, H.: Transfer of phase information between microwave and optical fields via an electron spin. Phys. Rev. Lett. 119, 063601 (2017)

    Article  Google Scholar 

  19. Hisatomi, R., Osada, A., Tabuchi, Y., Ishikawa, T., Noguchi, A., Yamazaki, R., Usami, K., Nakamura, Y.: Bidirectional conversion between microwave and light via ferromagnetic magnons. Phys. Rev. B 93, 174427 (2016)

    Article  ADS  Google Scholar 

  20. Tsang, M.: Cavity quantum electro-optics. Phys. Rev. A 81, 063837 (2010)

    Article  ADS  Google Scholar 

  21. Tsang, M.: Cavity quantum electro-optics. II. Input-output relations between traveling optical and microwave fields. Phys. Rev. A 84, 043845 (2011)

  22. Javerzac-Galy, C., Plekhanov, K., Bernier, N.R., Toth, L.D., Feofanov, A.K., Kippenberg, T.J.: On-chip microwave-to-optical quantum coherent converter based on a superconducting resonator coupled to an electro-optic microresonator. Phys. Rev. A 94, 053815 (2016)

    Article  ADS  Google Scholar 

  23. Rueda, A., Sedlmeir, F., Collodo, M.C., Vogl, U., Stiller, B., Schunk, G., Strekalov, D.V., Marquardt, C., Fink, J.M., Painter, O., Leuchs, G., Schwefel, H.G.L.: Efficient microwave to optical photon conversion: an electro-optical realization. Optica 3, 597 (2016)

    Article  ADS  Google Scholar 

  24. Stannigel, K., Rabl, P., Sørensen, A.S., Zoller, P., Lukin, M.D.: Optomechanical transducers for long-distance quantum communication. Phys. Rev. Lett. 105, 220501 (2010)

    Article  ADS  Google Scholar 

  25. Taylor, J.M., Sørensen, A.S., Marcus, C.M., Polzik, E.S.: Laser cooling and optical detection of excitations in a LC electrical circuit. Phys. Rev. Lett. 107, 273601 (2011)

    Article  ADS  Google Scholar 

  26. Barzanjeh, S., Abdi, M., Milburn, G.J., Tombesi, P., Vitali, D.: Reversible optical-to-microwave quantum interface. Phys. Rev. Lett. 109, 130503 (2012)

    Article  ADS  Google Scholar 

  27. Tian, L.: Adiabatic state conversion and pulse transmission in optomechanical systems. Phys. Rev. Lett. 108, 153604 (2012)

    Article  ADS  Google Scholar 

  28. Wang, Y.-D., Clerk, A.A.: Using interference for high fidelity quantum state transfer in optomechanics. Phys. Rev. Lett. 108, 153603 (2012)

    Article  ADS  Google Scholar 

  29. Clader, B.D.: Quantum networking of microwave photons using optical fibers. Phys. Rev. A 90, 012324 (2014)

    Article  ADS  Google Scholar 

  30. Yin, Z.-Q., Yang, W.L., Sun, L., Duan, L.M.: Quantum network of superconducting qubits through an optomechanical interface. Phys. Rev. A 91, 012333 (2015)

    Article  ADS  Google Scholar 

  31. Černotík, O., Hammerer, K.: Measurement-induced long-distance entanglement of superconducting qubits using optomechanical transducers. Phys. Rev. A 94, 012340 (2016)

    Article  ADS  Google Scholar 

  32. Okada, A., Oguro, F., Noguchi, A., Tabuchi, Y., Yamazaki, R., Usami, K., Nakamura, Y.: Cavity enhancement of anti-Stokes scattering via optomechanical coupling with surface acoustic Waves. Phys. Rev. Appl. 10, 024002 (2018)

    Article  ADS  Google Scholar 

  33. Bochmann, J., Vainsencher, A., Awschalom, D.D., Cleland, A.N.: Nanomechanical coupling between microwave and optical photons. Nat. Phys. 9, 712 (2013)

    Article  Google Scholar 

  34. Andrews, R.W., Peterson, R.W., Purdy, T.P., Cicak, K., Simmonds, R.W., Regal, C.A., Lehnert, K.W.: Bidirectional and efficient conversion between microwave and optical light. Nat. Phys. 10, 321 (2014)

    Article  Google Scholar 

  35. Bagci, T., Simonsen, A., Schmid, S., Villanueva, L.G., Zeuthen, E., Appel, J., Taylor, J.M., Sørensen, A.S., Usami, K., Schliesser, A., Polzik, E.S.: Optical detection of radio waves through a nanomechanical transducer. Nature 507, 81 (2014)

    Article  ADS  Google Scholar 

  36. Balram, K.C., Davanço, M.I., Song, J.D., Srinivasan, K.: Coherent coupling between radiofrequency optical and acoustic waves in piezo-optomechanical circuits. Nat. Photonics 10, 346 (2016)

    Article  ADS  Google Scholar 

  37. Bowen, W.P., Milburn, G.J.: Quantum Optomechanics. CRC Press, Taylor and Francis Group, Boca Raton (2016)

    MATH  Google Scholar 

  38. Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014)

    Article  ADS  Google Scholar 

  39. Kippenberg, T.J., Vahala, K.J.: Cavity optomechanics: back-action at the mesoscale. Science 321, 1172 (2008)

    Article  ADS  Google Scholar 

  40. Jiao, Y.F., Zhang, S.D., Zhang, Y.L., Miranowicz, A., Kuang, L.M., Jing, H.: Nonreciprocal optomechanical entanglement against backscattering losses. Phys. Rev. Lett. 125, 143605 (2020)

    Article  ADS  Google Scholar 

  41. Tan, Q.S., Yuan, J.B., Liao, J.Q., Kuang, L.M.: Supersensitive estimation of the coupling rate in cavity optomechanics with an impurity-doped Bose-Einstein condensate. Opt. Express 28, 22867 (2020)

    Article  ADS  Google Scholar 

  42. Zhai, C.L., Huang, R., Jing, H., Kuang, L.M.: Mechanical switch of photon blockade and photon-induced tunneling. Opt. Express 28, 22867 (2020)

    ADS  Google Scholar 

  43. Gröblacher, S., Hammerer, K., Vanner, M.R., Aspelmeyer, M.: Observation of strong coupling between a micromechanical resonator and an optical cavity field. Nature (London) 460, 724 (2009)

    Article  ADS  Google Scholar 

  44. Weis, S., Riviere, R., Deleglise, S., Gavartin, E., Arcizet, O., Schliesser, A., Kippenberg, T.J.: Optomechanically induced transparency. Science 330, 1520 (2010)

    Article  ADS  Google Scholar 

  45. Safavi-Naeini, A.H., Alegre, T.P.M., Chan, J., Eichenfield, M., Winger, M., Lin, Q., Hill, J.T., Chang, D.E., Painter, O.: Electromagnetically induced transparency and slow light with optomechanics. Nature (London) 472, 69 (2011)

    Article  ADS  Google Scholar 

  46. Chan, J., Alegre, T.P.M., Safavi-Naeini, A.H., Hill, J.T., Krause, A., Gröblacher, S., Aspelmeyer, M., Painter, O.: Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature (London) 478, 89 (2011)

    Article  ADS  Google Scholar 

  47. Brahms, N., Botter, T., Schreppler, S., Brooks, D.W.C., Stamper-Kurn, D.M.: Optical detection of the quantization of collective atomic motion. Phys. Rev. Lett. 108, 133601 (2012)

    Article  ADS  Google Scholar 

  48. Verhagen, E., Deleglise, S., Weis, S., Schliesser, A., Kippenberg, T.J.: Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature (London) 482, 63 (2012)

    Article  ADS  Google Scholar 

  49. Massel, F., Cho, S.U., Pirkkalainen, J.-M., Hakonen, P.J., Heikkilä, T.T., Sillanpää, M.A.: Multimode circuit optomechanics near the quantum limit. Nat. Commun. 3, 987 (2012)

    Article  ADS  Google Scholar 

  50. Agarwal, G.S., Huang, S.: Electromagnetically induced transparency in mechanical effects of light. Phys. Rev. A 81, 041803(R) (2010)

    Article  ADS  Google Scholar 

  51. Zhou, X., Hocke, F., Schliesser, A., Marx, A., Huebl, H., Gross, R., Kippenberg, T.J.: Slowing, advancing and switching of microwave signals using circuit nanoelectromechanics. Nat. Phys. 9, 179 (2013)

    Article  Google Scholar 

  52. O’Connell, A.D., Hofheinz, M., Ansmann, M., Bialczak, R.C., Lenander, M., Lucero, E., Neeley, M., Sank, D., Wang, H., Weides, M., Wenner, J., Martinis, J.M., Cleland, A.N.: Quantum ground state and single-phonon control of a mechanical resonator. Nature (London) 464, 697 (2010)

  53. Teufel, J.D., Li, D., Allman, M.S., Cicak, K., Sirois, A.J., Whittaker, J.D., Simmonds, R.W.: Circuit cavity electromechanics in the strong-coupling regime. Nature (London) 471, 204 (2011)

    Article  ADS  Google Scholar 

  54. Riviere, R., Deleglise, S., Weis, S., Gavartin, E., Arcizet, O., Schliesser, A., Kippenberg, T.J.: Optomechanical sideband cooling of a micromechanical oscillator close to the quantum ground state. Phys. Rev. A 83, 063835 (2011)

    Article  ADS  Google Scholar 

  55. Thompson, J.D., Zwickl, B.M., Jayich, A.M., Marquardt, F., Girvin, S.M., Harris, J.G.E.: Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature (London) 452, 72 (2008)

    Article  ADS  Google Scholar 

  56. Cirac, J.I., Zoller, P., Kimble, H.J., Mabuchi, H.: Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221 (1997)

    Article  ADS  Google Scholar 

  57. Dong, C., Fiore, V., Kuzyk, M.C., Wang, H.: Optomechanical dark mode. Science 338, 1609 (2012)

    Article  ADS  Google Scholar 

  58. Wang, Y.-D., Clerk, A.A.: Using interference for high fidelity quantum state transfer in optomechanics. Phys. Rev. Lett. 108, 153603 (2012)

    Article  ADS  Google Scholar 

  59. Zhang, X., Zou, C.-L., Zhu, N., Marquardt, F., Jiang, L., Tang, H.X.: Magnon dark modes and gradient memory. Nat. Commun. 6, 8914 (2015)

    Article  ADS  Google Scholar 

  60. Wang, Y.-D., Clerk, A.A.: Reservoir-engineered entanglement in optomechanical systems. Phys. Rev. Lett. 110, 253601 (2013)

    Article  ADS  Google Scholar 

  61. Tian, L.: Robust photon entanglement via quantum interference in optomechanical interfaces. Phys. Rev. Lett. 110, 233602 (2013)

    Article  ADS  Google Scholar 

  62. Lai, D.G., Wang, X., Qin, W., Hou, B.P., Nori, F., Liao, J.Q.: Tunable optomechanically induced transparency by controlling thed ark-mode effect. Phys. Rev. A 102, 023707 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  63. Lake, D.P., Mitchell, M., Sanders, B.C., Barclay, P.E.: Two-colour interferometry and switching through optomechanical dark mode excitation. Nat. Commun. 11, 2208 (2020)

    Article  ADS  Google Scholar 

  64. Kuzyk, M.C., Wang, H.: Controlling multimode optomechanical interactions via interference. Phys. Rev. A 96, 023860 (2017)

    Article  ADS  Google Scholar 

  65. Sommer, C., Genes, C.: Partial optomechanical refrigeration via multimode cold-damping feedback. Phys. Rev. Lett. 123, 203605 (2019)

    Article  ADS  Google Scholar 

  66. Ockeloen-Korppi, C.F., Gely, M.F., Damskägg, E., Jenkins, M., Steele, G.A., Sillanpää, M.A.: Sideband cooling of nearly degenerate micromechanical oscillators in a multi-mode optomechanical system. Phys. Rev. A 99, 023826 (2019)

    Article  ADS  Google Scholar 

  67. Sen, B., Mandal, S.: Squeezed states in spontaneous Raman and in stimulated Raman processes. J. Mod. Opt. 52, 1789 (2005)

    Article  ADS  Google Scholar 

  68. Sen, B., Giri, S.K., Mandal, S., Raymond Ooi, C.H., Pathak, A.: Intermodal entanglement in Raman processes. Phys. Rev. A 87, 022325 (2013)

    Article  ADS  Google Scholar 

  69. Giri, S.K., Sen, B., Pathak, A., Jana, P.C.: Higher-order two-mode and multimode entanglement in Raman processes. Phys. Rev. A 93, 012340 (2016)

    Article  ADS  Google Scholar 

  70. Barzanjeh, S., Guha, S., Weedbrook, C., Vitali, D., Shapiro, J.H., Pirandola, S.: Microwave quantum illumination. Phys. Rev. Lett. 114, 080503 (2015)

    Article  ADS  Google Scholar 

  71. Barzanjeh, S., Vitali, D., Tombesi, P., Milburn, G.J.: Entangling optical and microwave cavity modes by means of a nanomechanical resonator. Phys. Rev. A 84, 042342 (2011)

    Article  ADS  Google Scholar 

  72. Hill, J.T., Safavi-Naeini, A.H., Chan, J., Painter, O.: Coherent optical wavelength conversion via cavity optomechanics. Nat. Commun. 3, 1196 (2012)

    Article  ADS  Google Scholar 

  73. Jiang, W., Sarabalis, C.J., Dahmani, Y.D., Patel, R.N., Mayor, F.M., McKenna, P.T., Laer, R.V., Safavi-Naeini, A.H.: Efficient bidirectional piezo-optomechanical transduction between microwave and optical frequency. Nat. Commun. 11, 1166 (2020)

    Article  ADS  Google Scholar 

  74. Safavi-Naeini, A.H., Painter, O.: Proposal for an optomechanical traveling wave phonon-photon translator. New J. Phys. 13, 013017 (2011)

    Article  ADS  Google Scholar 

  75. Wang, Y.D., Clerk, A.A.: Using interference for high fidelity quantum state transfer in optomechanics. Phys. Rev. Lett. 108, 153603 (2012)

    Article  ADS  Google Scholar 

  76. Kuang, L.M., Zhou, L.: Generation of atom-photon entangled states in atomic Bose–Einstein condensate via electromagnetically induced transparency. Phys. Rev. A 68, 043606 (2003)

    Article  ADS  Google Scholar 

  77. Wang, X.G.: Bipartite entangled non-orthogonal states. J. Phys. A: Math. Gen. 35, 165 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  78. Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022 (1997)

    Article  ADS  Google Scholar 

  79. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 11775075, 1217050862, and 11935006, the STI Program of Hunan Province under Grant No. 2020RC4047.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le-Man Kuang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, LY., Dong, Y., Zhang, J. et al. Reversible optical–microwave quantum conversion assisted by optomechanical dynamically dark modes. Quantum Inf Process 20, 349 (2021). https://doi.org/10.1007/s11128-021-03269-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03269-9

Keywords

Navigation