Skip to main content
Log in

Measuring distance between quantum states on a quantum computer

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose protocols for determining the distances in Hilbert space between pure and mixed quantum states prepared on a quantum computer. In the case of pure quantum states, the protocol is based on measuring the square of modulus of scalar product between certain states. Determination of the distance between mixed quantum states is reduced to measuring the squares of modules of scalar products between all pure states included in the mixed states. In addition, we develop a protocol that allows one to determine the speed of evolution of the spin system simulated by a quantum computer. We apply these protocols to measure distances and speeds of evolution of different quantum systems implemented on the ibmq-santiago quantum computer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Dodonov, V.V., Man’ko, O.V., Man’ko, V.I., Wünsche, A.: Energy-sensitive and “classical-like” distances between quantum states. Phys. Scr. 59, 81 (1999)

  2. Bengtsson, I., Życzkowski, K.: Geometry of Quantum States. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  3. Tkachuk, V.M.: Fundamental Problems of Quantum Mechanic. Ivan Franko National University of Lviv, Lviv (2011). [in Ukrainian]

    Google Scholar 

  4. Anandan, J., Aharonov, Y.: Geometry of quantum evolution. Phys. Rev. Lett. 65, 1697 (1990)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  5. Anandan, J.: A geometric approach to quantum mechanics. Found. Phys. 21, 1265 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  6. Abe, S.: Quantized geometry associated with uncertainty and correlation. Phys. Rev. A 48, 4102 (1993)

    Article  ADS  Google Scholar 

  7. Kolodrubetz, M., Sels, D., Mehta, P., Polkovnikov, A.: Geometry and non-adiabatic response in quantum and classical systems. Phys. Rep. 697, 1 (2017)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  8. Brody, D.C., Hughston, L.P.: Geometric quantum mechanics. J. Geom. Phys. 38, 19 (2001)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  9. Kuzmak, A.R., Tkachuk, V.M.: The quantum brachistochrone problem for two spins-\(\frac{1}{2}\) with anisotropic Heisenberg interaction. J. Phys. A 46, 155305 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kuzmak, A.R., Tkachuk, V.M.: The quantum brachistochrone problem for an arbitrary spin in a magnetic field. Phys. Lett. A 379, 1233 (2015)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  11. Carlini, A., Hosoya, A., Koike, T., Okudaira, Y.: Time-optimal quantum evolution. Phys. Rev. Lett. 96, 060503 (2006)

    Article  MATH  ADS  Google Scholar 

  12. Brody, D.C., Hook, D.W.: On optimum Hamiltonians for state transformations. J. Phys. A 39, L167 (2006)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  13. Frydryszak, A.M., Tkachuk, V.M.: Quantum brachistochrone problem for a spin-1 system in a magnetic field. Phys. Rev. A 77, 014103 (2008)

    Article  ADS  Google Scholar 

  14. Russell, B., Stepney, S.: Zermelo navigation and a speed limit to quantum information processing. Phys. Rev. A 90, 012303 (2014)

    Article  ADS  Google Scholar 

  15. Chenu, A., Beau, M., Cao, J., del Campo, A.: Quantum simulation of generic many-body open system dynamics using classical noise. Phys. Rev. Lett. 118, 140403 (2017)

    Article  ADS  Google Scholar 

  16. Deffner, S., Campbell, S.: Quantum speed limits: from Heisenberg’s uncertainty principle to optimal quantum control. J. Phys. A 50, 453001 (2017)

  17. Krynytskyi, Y.S., Kuzmak, A.R.: Geometry and speed of evolution for a spin-s system with long-range zz-type Ising interaction. Ann. Phys. 405, 38 (2019)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  18. Frydryszak, A.M., Gieysztor, M., Kuzmak, A.R.: Probing the geometry of two-qubit state space by evolution. Quantum Inf. Process. 18, 84 (2019)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  19. Laba, H.P., Tkachuk, V.M.: Geometric characteristics of quantum evolution: curvature and torsion. Cond. Matt. Phys. 20, 13003 (2017)

    Article  Google Scholar 

  20. Shimony, A.: Degree of entanglement, Ann. N.Y. Acad. Sci. 755, 675 (1995)

  21. Wei, T.C., Goldbart, P.M.: Geometric measure of entanglement and applications to bipartite and multipartite quantum states. Phys. Rev. A 68, 042307 (2003)

    Article  ADS  Google Scholar 

  22. Chen, L., Aulbach, M., Hajdusek, M.: Comparison of different definitions of the geometric measure of entanglement. Phys. Rev. A 89, 042305 (2014)

    Article  ADS  Google Scholar 

  23. Frydryszak, A.M., Samar, M.I., Tkachuk, V.M.: Quantifying geometric measure of entanglement by mean value of spin and spin correlations with application to physical systems. Eur. Phys. J. D 71, 233 (2017)

    Article  ADS  Google Scholar 

  24. Kus, M., Życzkowski, K.: Geometry of entangled states. Phys. Rev. A 63, 042305 (2001)

    Article  MathSciNet  Google Scholar 

  25. Duan, L.M., Cirac, J.I., Zoller, P.: Geometric manipulation of trapped ions for quantum computation science. 292, 1695 (2001)

  26. Zu, C., et al.: Experimental realization of universal geometric quantum gates with solid-state spins. Nature 514, 72 (2014)

    Article  ADS  Google Scholar 

  27. Avron, J.E., Kenneth, O.: Entanglement and the geometry of two qubits. Ann. Phys. 324, 470 (2009)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  28. Kuzmak, A.R., Tkachuk, V.M.: Geometry of a two-spin quantum state in evolution. J. Phys. A 49, 045301 (2016)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  29. Kuzmak, A.R.: Quantum state geometry and entanglement of two spins with anisotropic interaction in evolution. J. Geom. Phys. 116, 81 (2017)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  30. Kuzmak, A.R.: Entanglement and quantum state geometry of a spin system with all-range Ising-type interaction. J. Phys. A. 51, 175305 (2018)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  31. Nielsen, M.A., Dowling, M.R., Gu, M., Doherty, A.C.: Optimal control, geometry, and quantum computing. Phys. Rev. Phys. Rev. A 73, 062323 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  32. Nielsen, M.A.: A geometric approach to quantum circuit lower bounds. Quant. Inf. Comput. 6, 213 (2006)

    MathSciNet  MATH  Google Scholar 

  33. Nielsen, M.A., Dowling, M.R., Gu, M., Doherty, A.C.: Quantum computation as geometry. Science 311, 1133 (2006)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  34. Khaneja, N., Heitmann, B., Spörl, A., Yuan, H., Schulte-Herbrüggen, T., Glaser, S.J.: Quantum gate design metric. arXiv:quant-ph/0605071, (2006)

  35. Li, B., Yu, Z.-H., Fei, S.-M.: Geometry of quantum computation with qutrits. Sci. Rep. 3, 2594 (2013)

  36. Abe, S.: Quantum-state space metric and correlations. Phys. Rev. A 46, 1667 (1992)

    Article  ADS  Google Scholar 

  37. Page, D.N.: Geometrical description of Berry’s phase. Phys. Rev. A 36, 3479(R) (1987)

  38. Kobayashi, S., Nomizu, K.: Fundations of Differential Geometry, vol. 2. Wiley, New York (1969)

    MATH  Google Scholar 

  39. Ozawa, T., Goldman, N.: Extracting the quantum metric tensor through periodic driving. Phys. Rev. B 97, 201117(R) (2018)

    Article  ADS  Google Scholar 

  40. Bargmann, V.: On unitary ray representations of continuous groups. Ann. Math. 59, 1 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wootters, W.K.: Statistical distance and Hilbert space. Phys. Rev. D 23, 357 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  42. Pati, A.K.: Relation between “phases” and “distance” in quantum evolution. Phys. Lett. A 159, 105 (1991)

  43. Ravicule, M., Casas, M., Plastino, A.: Information and metrics in Hilbert space. Phys. Rev. A 55, 1695 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  44. Jauch, J.M., Misra, B., Gibson, A.G.: On the asymptotic condition of scattering theory. Helv. Phys. Acta 41, 513 (1968)

    MATH  Google Scholar 

  45. Dieks, D., Veltkamp, P.: Distance between quantum states, statistical inference and the projection postulate. Phys. Lett. A 97, 24 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  46. Hillery, M.: Nonclassical distance in quantum optics. Phys. Rev. A 35, 725 (1987)

    Article  ADS  Google Scholar 

  47. Hillery, M.: Total noise and nonclassical states. Phys. Rev. A 39, 2994 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  48. Bures, D.: An extension of Kakutani’s theorem on infinite product measures to the tensor product of semifinite w*-algebras. Trans. Am. Math. Soc. 135, 199 (1969)

  49. Uhlmann, A.: The “transition probability” in the state space of a *-algebra. Rep. Math. Phys. 9, 273 (1976)

  50. von Baltz, R.: Distance between quantum states and the motion of wave packets. Europ. J. Phys. 11, 215 (1990)

    Article  Google Scholar 

  51. Życzkowski, K., Slomczynski, W.: The Monge metric on the sphere and geometry of quantum states. J. Phys. A 34, 6689 (2001)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  52. Knöll, L., Orlowski, A.: Distance between density operators: applications to the Jaynes-Cummings model. Phys. Rev. A 51, 1622 (1995)

    Article  ADS  Google Scholar 

  53. Dodonov, V.V., Reno, M.B.: Classicality and anticlassicality measures of pure and mixed quantum states. Phys. Lett. A 308, 249 (2003)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  54. Kuzmak, A.R., Tkachuk, V.M.: Detecting entanglement by the mean value of spin on a quantum computer. Phys. Lett. A 384, 126579 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  55. Gnatenko, Kh.P., Tkachuk, V.M.: Entanglement of graph states of spin system with Ising interaction and its quantifying on IBM’s quantum computer. Phys. Lett. A 396, 127248 (2021)

  56. Kuzmak, A.R., Tkachuk, V.M.: Measuring entanglement of a rank-2 mixed state prepared on a quantum computer. Eur. Phys. J. Plus 136, 564 (2021)

    Article  Google Scholar 

  57. IBM Q Experience. https://quantum-computing.ibm.com

  58. Cross, A.W., Bishop, L.S., Smolin, J.A., Gambetta, J.M.: Open quantum assembly language. arXiv:1707.03429 (2017)

  59. Boscain, U., Mason, P.: Time minimal trajectories for a spin 1/2 particle in a magnetic field. J. Math. Phys. 47, 062101 (2006)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  60. Boozer, A.D.: Time-optimal synthesis of SU(2) transformations for a spin-\(1/2\) system. Phys. Rev. A 85, 012317 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly supported by Project 77/02.2020 (No. 0120U104801) from National Research Foundation of Ukraine. We are grateful to Profs. Volodymyr Tkachuk and Andrij Rovenchak for helpful advices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Kuzmak.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzmak, A.R. Measuring distance between quantum states on a quantum computer. Quantum Inf Process 20, 269 (2021). https://doi.org/10.1007/s11128-021-03196-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03196-9

Keywords

Navigation