Montanaro, A.: Quantum speedup of Monte Carlo methods. Proc. R. Soc. Ser. A 471, 2181 (2015)
MathSciNet
MATH
Google Scholar
Suzuki, Y., et al.: Amplitude estimation without phase estimation. Quantum Inf. Process 19, 75 (2020)
ADS
MathSciNet
Article
Google Scholar
Hull, J.C.: Options, Futures, and Other Derivatives. Prentice Hall (2012)
Glasserman, P.: Monte Carlo Methods in Financial Engineering. Springer (2003)
Woerner, S., Egger, D.J.: Quantum risk analysis. NPJ Quantum Inf. 5(1), 1–8 (2019)
Article
Google Scholar
Egger, D. J. et al.: Credit risk analysis using quantum computers. arXiv:1907.03044
Miyamoto, K., Shiohara, K.: Reduction of qubits in quantum algorithm for Monte Carlo simulation by pseudo-random number generator. Phys. Rev. A 102, 022424 (2020)
ADS
Article
Google Scholar
Rebentrost, P., et al.: Quantum computational finance: Monte Carlo pricing of financial derivatives. Phys. Rev. A 98(2), 022321 (2018)
ADS
MathSciNet
Article
Google Scholar
Stamatopoulos, N., et al.: Option pricing using quantum computers. Quantum 4, 291 (2020)
Article
Google Scholar
Martin, A., et al.: Towards pricing financial derivatives with an IBM quantum computer. arXiv:1904.05803
Ramos-Calderer, S. et al.: Quantum unary approach to option pricing. arXiv:1912.01618
Vazquez, A.C., Woerner, S.: Efficient State Preparation for Quantum Amplitude Estimation. arXiv:2005.07711
Kaneko, K., et al.: Quantum pricing with a smile: implementation of local volatility model on quantum computer. arXiv:2007.01467
Orus, R., et al.: Quantum computing for finance: overview and prospects. Rev. Phys. 4, 100028 (2019)
Article
Google Scholar
Egger, D.J., et al.: Quantum computing for finance: state of the art and future prospects. IEEE Trans. Quantum Eng. 1, 3101724 (2020)
Article
Google Scholar
Bouland, A., et al.: Prospects and challenges of quantum finance. arXiv:2011.06492
Brassard, G., et al.: Quantum amplitude amplification and estimation. Contemp. Math. 305, 53 (2002)
MathSciNet
Article
Google Scholar
Aaronson, S., Rall, P.: Quantum approximate counting, simplified. In: Symposium on Simplicity in Algorithms, pp. 24–32. SIAM (2020)
Grinko, D., et al.: Iterative quantum amplitude estimation. arXiv:1912.05559
Nakaji, K.: Faster amplitude estimation. arXiv:2003.02417
Tanaka, T., et al.: Amplitude estimation via maximum likelihood on noisy quantum computer. arXiv:2006.16223
O’Neill, M.E.: PCG: a family of simple fast space-efficient statistically good algorithms for random number generation. Harvey Mudd College Computer Science Department Tachnical Report (2014). http://www.pcg-random.org/
L’Ecuyer, P., Simard, R.: TestU01: AC library for empirical testing of random number generators. ACM Trans. Math. Softw. 33(4), 22 (2007)
MATH
Google Scholar
Hörmann, W., Leydold, J.: Continuous random variate generation by fast numerical inversion. ACM Trans. Model. Comput. Simul. 13(4), 347 (2003)
Article
Google Scholar
Giovannetti, V., et al.: Architectures for a quantum random access memory. Phys. Rev. A 78, 052310 (2008)
ADS
Article
Google Scholar
Merton, R.C.: On the pricing of corporate debt: the risk structure of interest rates. J. Finance 29, 449 (1974)
Google Scholar
Zhou, X., et al.: Methodology for quantum logic gate construction. Phys. Rev. A 62, 052316 (2000)
ADS
Article
Google Scholar
Selinger, P.: Quantum circuits of T-depth one. Phys. Rev. A 87, 042302 (2013)
ADS
Article
Google Scholar
Maslov, D.: On the advantages of using relative phase Toffolis with an application to multiple control Toffoli optimization. Phys. Rev. A 93, 022311 (2016)
ADS
Article
Google Scholar
Amy, M., Maslov, D., Mosca, M.: Polynomial-time T-depth optimization of Clifford+T circuits via matroid partitioning. IEEE Trans. CAD 33(10), 1476 (2014)
Article
Google Scholar
Kliuchnikov, V., et al.: Practical approximation of single-qubit unitaries by single-qubit quantum Clifford and T circuits. IEEE Trans. Comput. 65(1), 161 (2016)
MathSciNet
Article
Google Scholar
Vedral, V., et al.: Quantum networks for elementary arithmetic operations. Phys. Rev. A 54, 147 (1996)
ADS
MathSciNet
Article
Google Scholar