Skip to main content
Log in

Information carrier and resource optimization of counterfactual quantum communication

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Counterfactual quantum communication is unique in its own way that allows remote parties to transfer information without sending any message carrier in the channel. Although no message carrier travels in the channel at the time of successful information transmission, it is impossible to transmit information faster than the speed of light, thus without an information carrier. In this paper, we address an important question ”What carries the information in counterfactual quantum communication?” and optimize the resource efficiency of the counterfactual quantum communication in terms of the number of channels used, time consumed to transmit 1-bit classical information between two remote parties, and the number of qubits required to accomplish the counterfactual quantum communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. We consider \(\cos \theta _N\approx 1\) for large values of N.

References

  1. Ursin, R., Tiefenbacher, F., Schmitt-Manderbach, T., Weier, H., Scheidl, T., Lindenthal, M., Blauensteiner, B., Jennewein, T., Perdigues, J., Trojek, P., et al.: Entanglement-based quantum communication over 144 km. Nat. Phys. 3(7), 481–486 (2007)

    Article  Google Scholar 

  2. Sasaki, T., Yamamoto, Y., Koashi, M.: Practical quantum key distribution protocol without monitoring signal disturbance. Nature 509(7501), 475–478 (2014)

    Article  ADS  Google Scholar 

  3. Wang, S., Yin, Z.Q., Chen, W., He, D.Y., Song, X.T., Li, H.W., Zhang, L.J., Zhou, Z., Guo, G.C., Han, Z.F.: Experimental demonstration of a quantum key distribution without signal disturbance monitoring. Nat. Phys. 9(12), 832–836 (2015)

    Google Scholar 

  4. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the einstein-podolsky-rosen pair block. Phys. Rev. A 68, 043217 (2003)

    Google Scholar 

  5. Salih, H., Li, Z.H., Al-Amri, M., Zubairy, M.S.: Protocol for direct counterfactual quantum communication. Phys. Rev. Lett. 110(17), 170502 (2013)

    Article  ADS  Google Scholar 

  6. Liu, Y., Ju, L., Liang, X.L., Tang, S.B., Tu, G.L.S., Zhou, L., Peng, C.Z., Chen, K., Chen, T.Y., Chen, Z.B., Pan, J.W.: Experimental demonstration of counterfactual quantum communication. Phys. Rev. Lett. 109, 030501 (2012)

    Article  ADS  Google Scholar 

  7. Zaman, F., Jeong, Y., Shin, H.: Counterfactual Bell-state analysis. Sci. Rep. 8(1), 14641 (2018)

    Article  ADS  Google Scholar 

  8. Zaman, F., Shin, H., Win, M.Z.: Quantum duplex coding. arXiv:1910.03200 (2019)

  9. Zaman, F., Shin, H., Win, M.Z.: Counterfactual concealed telecomputation. arXiv:2012.04948 (2020)

  10. Elitzur, A., Vaidman, L.: Quantum mechanical interaction-free measurement. Found. Phys. 23(76), 987–997 (1993)

    Article  ADS  Google Scholar 

  11. Kwiat, P., Weinfurter, H., Herzog, T., Zeilinger, A., Kasevich, M.A.: Interaction-free measurement. Phys. Rev. Lett. 74(24), 4763 (1995)

    Article  ADS  Google Scholar 

  12. Itano, W.M., Heinzen, D.J., Bollinger, J., Wineland, D.: Quantum Zeno effect. Phys. Rev. A 41(5), 2295 (1990)

    Article  ADS  Google Scholar 

  13. Zaman, F., Jeong, Y., Shin, H.: Dual quantum Zeno superdense coding. Sci. Rep. 9(1), 11193 (2019)

    Article  ADS  Google Scholar 

  14. Aharonov, Y., Vaidman, L.: Modification of counterfactual communication protocols that eliminates weak particle traces. Phys. Rev. A 99(1), 010103 (2019)

    Article  ADS  Google Scholar 

  15. Liu, C., Liu, J., Zhang, J., Zhu, S.: Improvement of reliability in multi-interferometer-based counterfactual deterministic communication with dissipation compensation. Opt. Exp. 26(3), 2261–2269 (2018)

    Article  ADS  Google Scholar 

  16. Liu, C., Liu, J., Zhang, J., Zhu, S.: The experimental demonstration of high efficiency interaction-free measurement for quantum counterfactual-like communication. Sci. Rep. 7(1), 10875 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2019R1A2C2007037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyundong Shin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaman, F., Lee, K. & Shin, H. Information carrier and resource optimization of counterfactual quantum communication. Quantum Inf Process 20, 168 (2021). https://doi.org/10.1007/s11128-021-03116-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03116-x

Keywords

Navigation