Häffner, H., Roos, C., Blatt, R.: Quantum computing with trapped ions. Phys. Rep. 469(4), 155 (2008)
MathSciNet
Article
ADS
Google Scholar
Cirac, J.I., Zoller, P.: Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091 (1995). https://doi.org/10.1103/PhysRevLett.74.4091
Article
ADS
Google Scholar
Moehring, D.L., Maunz, P., Olmschenk, S., Younge, K.C., Matsukevich, D.N., Duan, L.M., Monroe, C.: Entanglement of single-atom quantum bits at a distance. Nature (2007). https://doi.org/10.1038/nature06118
Article
Google Scholar
Monroe, C., Raussendorf, R., Ruthven, A., Brown, K.R., Maunz, P., Duan, L.M., Kim, J.: Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects. Phys. Rev. A 89, 022317 (2014). https://doi.org/10.1103/PhysRevA.89.022317
Article
ADS
Google Scholar
Rajagopal, V., Marler, J.P., Kokish, M.G., Odom, B.C.: Trapped ion chain thermometry and mass spectrometry through imaging. Eur. J. Mass Spectrom. 22(1), 1 (2016). https://doi.org/10.1255/ejms.1408
Article
Google Scholar
Chen, J.S., Brewer, S.M., Chou, C.W., Wineland, D.J., Leibrandt, D.R., Hume, D.B.: Sympathetic ground state cooling and time-dilation shifts in an \({^{27}\rm Al}^{+}\) optical clock. Phys. Rev. Lett. 118, 053002 (2017). https://doi.org/10.1103/PhysRevLett.118.053002
Article
Google Scholar
Rohde, H., Gulde, S.T., Roos, C.F., Barton, P.A., Leibfried, D., Eschner, J., Schmidt-Kaler, F., Blatt, R.: Sympathetic ground-state cooling and coherent manipulation with two-ion crystals. J. Opt. B Quantum Semiclass. Opt. 3(1), S34 (2001)
Article
ADS
Google Scholar
Sugiyama, K.: Laser cooling of single 174 Yb + ions stored in a RF. Trap. Jpn. J. Appl. Phys. 38(4R), 2141 (1999)
Article
ADS
Google Scholar
Blinov, B.B., Deslauriers, L., Lee, P., Madsen, M.J., Miller, R., Monroe, C.: Sympathetic cooling of trapped Cd\(^{+}\) isotopes. PRA 65(4), 040304 (2002). https://doi.org/10.1103/PhysRevA.65.040304
Article
Google Scholar
Hucul, D., Inlek, I.V., Vittorini, G., Crocker, C., Debnath, S., Clark, S.M., Monroe, C.: Modular entanglement of atomic qubits using photons and phonons. Nat. Phys. 11, 37 (2014). https://doi.org/10.1038/nphys3150
Article
Google Scholar
Home, J.P., McDonnell, M.J., Szwer, D.J., Keitch, B.C., Lucas, D.M., Stacey, D.N., Steane, A.M.: Memory coherence of a sympathetically cooled trapped-ion qubit. Phys. Rev. A 79(5), 050305 (2009). https://doi.org/10.1103/PhysRevA.79.050305
Article
ADS
Google Scholar
Wang, Y., Um, M., Zhang, J., An, S., Lyu, M., Zhang, J.N., Duan, L.M., Yum, D., Kim, K.: Single qubit quantum memory exceeding ten-minute coherence time. Nat. Photon. (2017). https://doi.org/10.1038/s41566-017-0007-1
Article
Google Scholar
Wübbena, J.B., Amairi, S., Mandel, O., Schmidt, P.O.: Sympathetic cooling of mixed-species two-ion crystals for precision spectroscopy. Phys. Rev. A 85, 043412 (2012). https://doi.org/10.1103/PhysRevA.85.043412
Article
ADS
Google Scholar
Lin, G.-D., Zhu, S.-L., Islam, R., Kim, K., Chang, M.-S., Korenblit, S., Monroe, C., Duan, L.-M.: Large-scale quantum computation in an anharmonic linear ion trap. EPL 86(6), 60004 (2009). https://doi.org/10.1209/0295-5075/86/60004
Article
ADS
Google Scholar
Zhu, S.L., Monroe, C., Duan, L.M.: Trapped ion quantum computation with transverse phonon modes. Phys. Rev. Lett. 97, 050505 (2006). https://doi.org/10.1103/PhysRevLett.97.050505
Article
ADS
Google Scholar
Bentley, C.D.B., Carvalho, A.R.R., Hope, J.J.: Trapped ion scaling with pulsed fast gates. New J. Phys. 17(10), 103025 (2015)
Article
ADS
Google Scholar
Kielpinski, D., King, B.E., Myatt, C.J., Sackett, C.A., Turchette, Q.A., Itano, W.M., Monroe, C., Wineland, D.J., Zurek, W.H.: Sympathetic cooling of trapped ions for quantum logic. Phys. Rev. A 61, 032310 (2000). https://doi.org/10.1103/PhysRevA.61.032310
Article
ADS
Google Scholar
Turchette, Q.A., Kielpinski, B.E., King, D., Leibfried, D.M., Meekhof, C.J., Myatt, M.A., Rowe, C.A., Sackett, C.S., Wood, W.M., Itano, C., Monroe, D.J. Wineland.: Heating of trapped ions from the quantum ground state. Phys. Rev. A 61, 063418 (2000). https://doi.org/10.1103/PhysRevA.61.063418
Article
ADS
Google Scholar
Safavi-Naini, A., Rabl, P., Weck, P.F., Sadeghpour, H.R.: Microscopic model of electric-field-noise heating in ion traps. Phys. Rev. A 84, 023412 (2011). https://doi.org/10.1103/PhysRevA.84.023412
Article
ADS
Google Scholar
Dietrich, M.R., Kurz, N., Noel, T., Shu, G., Blinov, B.B.: Hyperfine and optical barium ion qubits. Phys. Rev. A 81, 052328 (2010)
Article
ADS
Google Scholar
Wright, J., Auchter, C., Chou, C.K., Graham, R.D., Noel, T.L.W., Sakrejda, T., Zhou, Z., Blinov, B.B.: Toward a scalable quantum computing architecture with mixed species ion chains. Quantum Inf. Process. 15, 5339 (2016)
Article
ADS
Google Scholar
Noel, T., Dietrich, M.R., Kurz, N., Shu, G., Wright, J., Blinov, B.B.: Adiabatic passage in the presence of noise. Phys. Rev. A 85, 023401 (2012). https://doi.org/10.1103/PhysRevA.85.023401
Article
ADS
Google Scholar
Wright, J.: Phd thesis. Ph.D. thesis, University of Washington (2015)
Janik, G., Nagourney, W., Dehmelt, H.: Doppler-free optical spectroscopy on the Ba\(+\) mono-ion oscillator. J. Opt. Soc. Am. B 2(8), 1251 (1985). https://doi.org/10.1364/JOSAB.2.001251
Article
Google Scholar
Lin, Y., Gaebler, J.P., Tan, T.R., Bowler, R., Jost, J.D., Leibfried, D., Wineland, D.J.: Sympathetic electromagnetically-induced-transparency laser cooling of motional modes in an ion chain. Phys. Rev. Lett. 110, 153002 (2013). https://doi.org/10.1103/PhysRevLett.110.153002
Article
ADS
Google Scholar