Skip to main content

Characterizing Bell state analyzer using weak coherent pulses

Abstract

Bell state analyzer (BSA) is one of the most crucial apparatuses in photonic quantum information processing. While linear optics provide a practical way to implement BSA, it provides unavoidable errors when inputs are not ideal single-photon states. Here, we propose a simple method to deduce the BSA for single-photon inputs using weak coherent pulses. By applying the method to Reference-Frame-Independent Measurement-Device-Independent Quantum Key Distribution, we experimentally verify the feasibility and effectiveness of the method.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2008)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  2. Branciard, C., Rosset, D., Liang, Y.-C., Gisin, N.: Measurement-device-independent entanglement witnesses for all entangled quantum states. Phys. Rev. Lett. 110, 060405 (2013)

    ADS  Article  Google Scholar 

  3. Kim, Y.-S., Pramanik, T., Cho, Y.-W., Yang, M., Han, S.-W., Lee, S.-Y., Kang, M.-S., Moon, S.: Informationally symmetrical Bell state preparation and measurement. Opt. Express 26, 29539 (2018)

    ADS  Article  Google Scholar 

  4. Braunstein, S.L., Pirandola, S.: Side-channel-free quantum key distribution. Phys. Rev. Lett. 108, 130502 (2012)

    ADS  Article  Google Scholar 

  5. Lo, H.-K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)

    ADS  Article  Google Scholar 

  6. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  7. Bouwmeester, Pan, J.-W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575 (1997)

  8. Gottesman, D., Chuang, I.L.: Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390 (1999)

    ADS  Article  Google Scholar 

  9. Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409, 46 (2001)

    ADS  Article  Google Scholar 

  10. Gao, W.-B., Goebel, A.M., Lu, C.-Y., Dai, H.-N., Wagenknecht, C., Zhang, Q., Zhao, B., Peng, C.-Z., Chen, Z.-B., Chen, Y.-A., Pan, J.-W.: Teleportation-based realization of an optical quantum two-qubit entangling gate. Proc. Natl. Acad. Sci. USA 107, 20869 (2010)

    ADS  Article  Google Scholar 

  11. Mattle, K., Weinfurter, H., Kwiat, P.G., Zeilinger, A.: Dense coding in experimental quantum communication. Phys. Rev. Lett. 76, 4656 (1996)

    ADS  Article  Google Scholar 

  12. Ma, X.-S., Zotter, S., Kofler, J., Ursin, R., Jennewein, T., Brukner, C̆, Zeilinger, A.: Experimental delayed-choice entanglement swapping. Nature Phys. 8, 479 (2012)

  13. Calsamiglia, J., Lütkenhaus, N.: Maximum efficiency of a linear-optical Bell-state analyzer. Appl. Phys. B: Lasers and Opt. 72, 67 (2001)

    ADS  Article  Google Scholar 

  14. Choi, Y., Kwon, O., Woo, M., Oh, K., Han, S.-W., Kim, Y.-S., Moon, S.: Plug-and-play measurement-device-independent quantum key distribution. Phys. Rev. A 93, 032319 (2016)

    ADS  Article  Google Scholar 

  15. Yin, H.-L., Chen, T.-Y., Yu, Z.-W., Liu, H., You, L.-X., Zhou, Y.-H., Chen, S.-J., Mao, Y., Huang, M.-Q., Zhang, W.-J., Chen, H., Li, M. J., Nolan, D., F. Z., Jiang, X., Wang, Z., Zhang, Q., Wang, X.-B., Pan, J.-W.: Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett. 117, 190501 (2016)

  16. Park, C.H., Woo, M.K., Park, B.K., Lee, M.S., Kim, Y.-S., Cho, Y.-W., Kim, S., Han, S.-W., Moon, S.: Practical plug-and-play measurement-device- independent quantum key distribution with polarization division multiplexing. IEEE Access 6, 58587 (2018)

    Article  Google Scholar 

  17. Liu, H., Wang, W., Wei, K., Fang, X.-T., Li, L., Liu, N.-L., Liang, H., Zhang, S.-J., Zhang, W., Li, H., You, L., Wang, Z., Lo, H.-K., Chen, T.-Y., Xu, F., Pan, J.-W.: Experimental demonstration of high-rate measurement-device-independent quantum key distribution over asymmetric channels. Phys. Rev. Lett. 122, 160501 (2019)

    ADS  Article  Google Scholar 

  18. Wang, C., Song, X.-T., Yin, Z.-Q., Wang, S., Chen, W., Zhang, C.-M., Guo, G.-C., Han, Z.-F.: Phase-reference-free experiment of measurement-device-independent quantum key distribution. Phys. Rev. Lett. 115, 160502 (2015)

    ADS  Article  Google Scholar 

  19. Wang, C., Yin, Z.-Q., Wang, S., Chen, W., Guo, G.-C., Han, Z.-F.: Measurement-device-independent quantum key distribution robust against environmental disturbances. Optica 4, 1016 (2017)

    ADS  Article  Google Scholar 

  20. Liu, H., Wang, J., Ma, H., Sun, S.: Polarization-multiplexing-based measurement-device-independent quantum key distribution without phase reference calibration. Optica 5, 902 (2018)

    ADS  Article  Google Scholar 

  21. Yuan, X., Zhang, Z., Lütkenhaus, Norbert, Ma, X.: Simulating single photons with realistic photon sources. Phys. Rev. A 94, 062305 (2016)

  22. Navarrete, Á., Wang, W., Xu, F., Curty, M.: Characterizing multi-photon quantum interference with practical light sources and threshold single-photon detectors. New J. Phys. 20, 043018 (2018)

    ADS  Article  Google Scholar 

  23. Aragoneses, A., Islam, N.T., Eggleston, M., Lezama, A., Kim, J., Gauthier, D.J.: Bounding the outcome of a two-photon interference measurement using weak coherent states. Opt. Lett. 43, 3806 (2018)

    ADS  Article  Google Scholar 

  24. Zhang, Y.-Z., Wei, K., Xu, F.: Generalized Hong-Ou-Mandel quantum interference with phase-randomized weak coherent states. Phys. Rev. A 101, 033823 (2020)

    ADS  Article  Google Scholar 

  25. Lee, D., Hong, S.-J., Cho, Y.-W., Lim, H.-T., Han, S.-W., Jung, H., Moon, S., Lee, K.J., Kim, Y.-S.: Reference-frame-independent measurement-device-independent quantum key distribution using fewer quantum states. Opt. Lett. 45, 2624 (2020)

    ADS  Article  Google Scholar 

  26. Kim, Y.-S., Slattery, O., Kuo, P.S., Tang, X.: Conditions for two-photon interference with coherent pulses. Phys. Rev. A 87, 063843 (2013)

    ADS  Article  Google Scholar 

  27. Kim, Y.-S., Slattery, O., Kuo, P.S., Tang, X.: Two-photon interference with continuous-wave multi-mode coherent light. Opt. Express 22, 3611 (2014)

    ADS  Article  Google Scholar 

  28. Yoon, J., Pramanik, T., Park, B.-K., Cho, Y.-W., Lee, S.-Y., Kim, S., Han, S.-W., Moon, S., Kim, Y.-S.: Experimental comparison of various quantum key distribution protocols under reference frame rotation and fluctuation. Opt. Comm. 441, 64 (2019)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the NRF programs (2019M3E4A1079777, 2019R1A2C2006381, 2019M3E4A107866011), the IITP programs (2020-0-00947, 2020-0-00972), and the KIST research program (2E30620).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Su Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, D., Cho, YW., Lim, HT. et al. Characterizing Bell state analyzer using weak coherent pulses. Quantum Inf Process 20, 149 (2021). https://doi.org/10.1007/s11128-021-03092-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03092-2

Keywords

  • Linear optical quantum circuits
  • Bell state analyzer
  • Photon number distribution
  • Photonic qubits