Skip to main content
Log in

Preparation of spin eigenstates including the Dicke states with generalized all-coupled interaction in a spintronic quantum computing architecture

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

There has been an extensive development in the use of multi-partite entanglement as a resource for various quantum information processing tasks. In this paper, we focus on preparing arbitrary spin eigenstates whose subset contains important entangled resources like Dicke states. Leveraging on the symmetry of these states, we consider uniform pairwise exchange coupling between every pair of qubits. Starting from a product state of a given spin eigenstate with a single-qubit state, another spin eigenstate can be prepared using simple time evolutions. This expansion paves a deterministic approach to prepare arbitrary Dicke states in linear steps. We discuss an improvement in this cost, building up on a previous work on deterministic preparation of W states in logarithmic circuit depth (Sharma and Tulapurkar in Phys Rev A 101:062330, 2020). The modified algorithm requires several iterations of pumping spin angular momentum into the system and is akin to the amplitude amplification in Grover’s search. To demonstrate the proposed scheme, we choose a system of non-interacting static spin qubits connected to a ferromagnetic reservoir. The flying qubits emerging from the reservoir locally interact with static qubits successively, mediating an in-direct exchange interaction between all the pairs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sharma, A., Tulapurkar, A.A.: Generation of \(n\)-qubit \(W\) states using spin torque. Phys. Rev. A 101, 062330 (2020)

    Article  ADS  Google Scholar 

  2. Shende, V.V., Bullock, S.S., Markov, I.L.: Synthesis of quantum-logic circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 25, 1000 (2006)

    Article  Google Scholar 

  3. Dicke, R.H.: Coherence in spontaneous radiation processes. Phys. Rev. 93, 99 (1954)

    Article  ADS  Google Scholar 

  4. Meiser, D., Ye, J., Carlson, D.R., Holland, M.J.: Prospects for a Millihertz–Linewidth laser. Phys. Rev. Lett. (2009). https://doi.org/10.1103/physrevlett.102.163601

    Article  Google Scholar 

  5. Breeze, J.D., Salvadori, E., Sathian, J., Alford, N.M., Kay, C.W.M.: Room-temperature cavity quantum electrodynamics with strongly coupled Dicke states. Quantum Inf. (2017). https://doi.org/10.1038/s41534-017-0041-3

    Article  Google Scholar 

  6. Baumann, K., Guerlin, C., Brennecke, F., Esslinger, T.: Dicke quantum phase transition with a superfluid gas in an optical cavity. Nature 464, 1301 (2010)

    Article  ADS  Google Scholar 

  7. Yu, S., Titze, M., Zhu, Y., Liu, X., Li, H.: Observation of scalable and deterministic multi-atom Dicke states in an atomic vapor. Opt. Lett. 44, 2795 (2019)

    Article  ADS  Google Scholar 

  8. Neven, A., Martin, J., Bastin, T.: Entanglement robustness against particle loss in multiqubit systems. Phys. Rev. A (2018). https://doi.org/10.1103/physreva.98.062335

    Article  Google Scholar 

  9. Lidar, D.A., Whaley, K.B.: Irreversible Quantum Dynamics, pp. 83–120. Springer, Berlin (2003)

    Book  Google Scholar 

  10. Kiesel, N., Schmid, C., T’oth, G., Solano, E., Weinfurter, H.: Experimental observation of four-photon entangled Dicke state with high fidelity. Phys. Rev. Lett. (2007). https://doi.org/10.1103/physrevlett.98.063604

    Article  Google Scholar 

  11. Sen, A., Sen, U., Zukowski, M.: Unified criterion for security of secret sharing in terms of violation of Bell inequalities. Phys. Rev. A (2003). https://doi.org/10.1103/physreva.68.032309

    Article  MathSciNet  Google Scholar 

  12. Childs, A.M., Farhi, E., Goldstone, J., Gutmann, S.: Finding cliques by quantum adiabatic evolution. Quantum Inf. Comput. 2, 181–191 (2002)

    MathSciNet  MATH  Google Scholar 

  13. Ivanov, S.S., Ivanov, P.A., Linington, I.E., Vitanov, N.V.: Scalable quantum search using trapped ions. Phys. Rev. A (2010). https://doi.org/10.1103/physreva.81.042328

    Article  Google Scholar 

  14. Prevedel, R., Cronenberg, G., Tame, M.S., Paternostro, M., Walther, P., Kim, M.S., Zeilinger, A.: Experimental realization of Dicke states of up to six qubits for multiparty quantum networking. Phys. Rev. Lett. (2009). https://doi.org/10.1103/physrevlett.103.020503

    Article  Google Scholar 

  15. Chiuri, A., Greganti, C., Paternostro, M., Vallone, G., Mataloni, P.: Experimental quantum networking protocols via four-qubit hyperentangled Dicke states. Phys. Rev. Lett. (2012). https://doi.org/10.1103/physrevlett.109.173604

    Article  Google Scholar 

  16. T’oth, G.: Detection of multipartite entanglement in the vicinity of symmetric Dicke states. J. Opt. Soc. Am. B 24, 275 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  17. T’oth, G.: Multipartite entanglement and high-precision metrology. Phys. Rev. A (2012). https://doi.org/10.1103/physreva.85.022322

    Article  Google Scholar 

  18. Ivanov, S.S., Vitanov, N.V., Korolkova, N.V.: Creation of arbitrary Dicke and NOON states of trapped-ion qubits by global addressing with composite pulses. New J. Phys. 15, 023039 (2013)

    Article  ADS  Google Scholar 

  19. Hume, D.B., Chou, C.W., Rosenband, T., Wineland, D.J.: Preparation of Dicke states in an ion chain. Phys. Rev. A (2009). https://doi.org/10.1103/physreva.80.052302

    Article  Google Scholar 

  20. Ji, Y.Q., Liu, Y.L., Zhou, S.J., Xiu, X.M., Dong, L., Dong, H.K., Gao, Y.J., Yi, X.X.: Fast conversion of Dicke states \(|{D}_{n}^{(2)}{\rangle }\) to \(|{D}_{n+1}^{(2)}{\rangle }\) by transitionless quantum driving. Phys. Rev. A 99, 023808 (2019)

    Article  ADS  Google Scholar 

  21. Xiao, Y.-F., Zou, X.-B., Guo, G.-C.: Generation of atomic entangled states with selective resonant interaction in cavity quantum electrodynamics. Phys. Rev. A (2007). https://doi.org/10.1103/physreva.75.012310

    Article  Google Scholar 

  22. Wu, C., Guo, C., Wang, Y., Wang, G., Feng, X.-L., Chen, J.-L.: Generation of Dicke states in the ultrastrong-coupling regime of circuit QED systems. Phys. Rev. A (2017). https://doi.org/10.1103/physreva.95.013845

    Article  Google Scholar 

  23. Neeley, M., Bialczak, R.C., Lenander, M., Lucero, E., Mariantoni, M., O’Connell, A.D., Sank, D., Wang, H., Weides, M., Wenner, J., Yin, Y., Yamamoto, T., Cleland, A.N., Martinis, J.M.: Generation of three-qubit entangled states using superconducting phase qubits. Nature 467, 570 (2010)

    Article  ADS  Google Scholar 

  24. Wieczorek, W., Krischek, R., Kiesel, N., Michelberger, P., T’oth, G., Weinfurter, H.: Experimental entanglement of a six-photon symmetric Dicke state. Phys. Rev. Lett. (2009). https://doi.org/10.1103/physrevlett.103.020504

    Article  Google Scholar 

  25. Wang, M.-Y., Yan, F.-L., Gao, T.: Deterministic distribution of four-photon Dicke state over an arbitrary collective-noise channel with cross-Kerr nonlinearity. Sci. Rep. (2016). https://doi.org/10.1038/srep29853

    Article  Google Scholar 

  26. Bugu, S., Ozaydin, F., Ferrus, T., Kodera, T.: Preparing multipartite entangled spin qubits via pauli spin blockade. Sci. Rep. (2020). https://doi.org/10.1038/s41598-020-60299-6

    Article  Google Scholar 

  27. Luo, Y., Yu, H., Yao, W.: Deterministic preparation of Dicke states of donor nuclear spins in silicon by cooperative pumping. Phys. Rev. B (2012). https://doi.org/10.1103/physrevb.85.155304

    Article  Google Scholar 

  28. Bärtschi, A., Eidenbenz, S.: Fundamentals of Computation Theory, pp. 126–139. Springer, Berlin (2019)

    Book  Google Scholar 

  29. Filipp, S., van Loo, A.F., Baur, M., Steffen, L., Wallraff, A.: Preparation of subradiant states using local qubit control in circuit QED. Phys. Rev. A 84, 061805 (2011)

    Article  ADS  Google Scholar 

  30. DeVoe, R.G., Brewer, R.G.: Observation of superradiant and subradiant spontaneous emission of two trapped ions. Phys. Rev. Lett. 76, 2049 (1996)

    Article  ADS  Google Scholar 

  31. Pavolini, D., Crubellier, A., Pillet, P., Cabaret, L., Liberman, S.: Experimental evidence for subradiance. Phys. Rev. Lett. 54, 1917 (1985)

    Article  ADS  Google Scholar 

  32. Begzjav, T.K., Wang, L., Nessler, R.: On permutation symmetry of subradiant states and its application. Phys. Scr. 94, 094001 (2019)

    Article  ADS  Google Scholar 

  33. Sutton, B., Datta, S.: Manipulating quantum information with spin torque. Sci. Rep. (2015). https://doi.org/10.1038/srep17912

    Article  Google Scholar 

  34. Kulkarni, A., Kaushik, B.K.: Spin-torque-based quantum Fourier transform. IEEE Trans. Magn. 55, 1 (2019)

    Article  Google Scholar 

  35. Compagno, G., Messina, A., Nakazato, H., Napoli, A., Unoki, M., Yuasa, K.: Distillation of entanglement between distant systems by repeated measurements on an entanglement mediator. Phys. Rev. A (2004). https://doi.org/10.1103/physreva.70.052316

    Article  Google Scholar 

  36. Costa, A.T., Bose, S., Omar, Y.: Entanglement of two impurities through electron scattering. Phys. Rev. Lett. (2006). https://doi.org/10.1103/physrevlett.96.230501

    Article  Google Scholar 

  37. Yuasa, K., Nakazato, H.: Resonant scattering can enhance the degree of entanglement. J. Phys. A Math. Theor. 40, 297 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  38. Ciccarello, F., Paternostro, M., Kim, M.S., Palma, G.M.: Extraction of singlet states from noninteracting high-dimensional spins. Phys. Rev. Lett. (2008). https://doi.org/10.1103/physrevlett.100.150501

    Article  Google Scholar 

  39. Pasquale, A.D., Yuasa, K., Nakazato, H.: State tomography of a qubit through scattering of a probe qubit. Phys. Rev. A (2009). https://doi.org/10.1103/physreva.80.052111

    Article  Google Scholar 

  40. Cordourier-Maruri, G., Ciccarello, F., Omar, Y., Zarcone, M., de Coss, R., Bose, S.: Implementing quantum gates through scattering between a static and a flying qubit. Phys. Rev. A (2010). https://doi.org/10.1103/physreva.82.052313

    Article  Google Scholar 

  41. Ciccarello, F., Browne, D.E., Kwek, L.C., Schomerus, H., Zarcone, M., Bose, S.: Quasideterministic realization of a universal quantum gate in a single scattering process. Phys. Rev. A (2012). https://doi.org/10.1103/physreva.85.050305

    Article  Google Scholar 

  42. Pasquale, A.D., Facchi, P., Giovannetti, V., Yuasa, K.: Entanglement-assisted tomography of a quantum target. J. Phys. A Math. Theor. 45, 105309 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  43. Shukla, A.S., Chouhan, A., Pandey, R., Raghupathi, M., Yamamoto, T., Kubota, H., Fukushima, A., Yuasa, S., Nozaki, T., Tulapurkar, A.A.: Generation of charge current from magnetization oscillation via the inverse of voltage-controlled magnetic anisotropy effect. Sci. Adv. (2020). https://doi.org/10.1126/sciadv.abc2618

    Article  Google Scholar 

  44. Slonczewski, J.: Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1 (1996)

    Article  ADS  Google Scholar 

  45. Berger, L.: Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353 (1996)

    Article  ADS  Google Scholar 

  46. Bhuktare, S., Shukla, A.S., Singh, H., Bose, A., Tulapurkar, A.A.: Direct observation of the reciprocity between spin current and phonon interconversion. Appl. Phys. Lett. 114, 052402 (2019)

    Article  ADS  Google Scholar 

  47. Bose, A., Dutta, S., Bhuktare, S., Singh, H., Tulapurkar, A.A.: Sensitive measurement of spin-orbit torque driven ferromagnetic resonance detected by planar Hall geometry. Appl. Phys. Lett. 111, 162405 (2017)

    Article  ADS  Google Scholar 

  48. Bose, A., Lam, D., Bhuktare, S., Dutta, S., Singh, H., Jibiki, Y., Goto, M., Miwa, S., Tulapurkar, A.: Observation of anomalous spin torque generated by a ferromagnet. Phys. Rev. Appl. (2018a). https://doi.org/10.1103/physrevapplied.9.064026

    Article  Google Scholar 

  49. Bose, A., Shukla, A.K., Konishi, K., Jain, S., Asam, N., Bhuktare, S., Singh, H., Lam, D.D., Fujii, Y., Miwa, S., Suzuki, Y., Tulapurkar, A.A.: Observation of thermally driven field-like spin torque in magnetic tunnel junctions. Appl. Phys. Lett. 109, 032406 (2016)

    Article  ADS  Google Scholar 

  50. Bose, A., Tulapurkar, A.A.: Recent advances in the spin Nernst effect. J. Magn. Magn. Mater. 491, 165526 (2019)

    Article  Google Scholar 

  51. Bose, A., Bhuktare, S., Singh, H., Dutta, S., Achanta, V.G., Tulapurkar, A.A.: Direct detection of spin Nernst effect in platinum. Appl. Phys. Lett. 112, 162401 (2018b)

    Article  ADS  Google Scholar 

  52. Pauncz, R.: Spin Eigenfunctions. Springer, New York (1979)

    Book  Google Scholar 

  53. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  54. Huang, B., Monsma, D.J., Appelbaum, I.: Coherent spin transport through a 350 micron thick silicon wafer. Phys. Rev. Lett. 99, 177209 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of Department of Science and Technology (DST), Government of India through Project No. SR/NM/NS-1112/2016 and Science and Engineering Research Board (SERB) through Project No. EMR/2016/007131.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashwin A. Tulapurkar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1249 KB)

Supplementary material 2 (mp4 3434 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Tulapurkar, A.A. Preparation of spin eigenstates including the Dicke states with generalized all-coupled interaction in a spintronic quantum computing architecture. Quantum Inf Process 20, 172 (2021). https://doi.org/10.1007/s11128-021-03063-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03063-7

Keywords

Navigation