Skip to main content
Log in

Efficient polarization beam splitter based on the optimized stationary light pulse

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A tripod-double M type atomic system is proposed for generating stationary light pulse (SLP) encoded in degree of freedom of polarization, and realizing configurable polarization beam splitter through the active operation of the controlling fields and the additional intensity-modulated weak microwave fields. Compared to the previous work [Phys. Rev. A, 100 (2019) 013844], the present one has the following advantages: (1) the generated SLP and the retrieved signal field can be amplified or decreased in a controllable manner, (2) beam-splitting ratio of the left and the right circularly polarized components can be flexibly and continuously configurable in a wide range, and (3) the frequency and the polarization state of the input signal field can be converted. The current scheme, integrating multiple functions and showing excellent performance, may find promising applications in all-optical information processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Post, E.J.: Sagnac effect. Rev. Mod. Phys. 39, 475 (1967)

    Article  ADS  Google Scholar 

  2. Yurke, B., McCall, S.L., Klauder, J.R.: Su(2) and su(1,1) interferometers. Phys. Rev. A 33, 4033 (1986)

    Article  ADS  Google Scholar 

  3. Kok, P., Munro, W.J., Nemoto, K., Ralph, T.C., Dowling, J.P., Milburn, G.J.: Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135 (2007)

    Article  ADS  Google Scholar 

  4. Pan, J.W., Chen, Z.B., Lu, C.Y., Weinfurter, H., Zeilinger, A., Zukowski, M.: Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777 (2012)

    Article  ADS  Google Scholar 

  5. Brown, R.H., Twiss, R.Q.: Correlation between photons in 2 coherent beams of light. Nature 177, 27 (1956)

    Article  ADS  Google Scholar 

  6. Hong, C.K., Ou, Z.Y., Mandel, L.: Measurement of subpicosecond time intervals between 2 photons by interference. Phys. Rev. Lett. 59, 2044 (1987)

    Article  ADS  Google Scholar 

  7. Cheben, P., Halir, R., Schmid, J.H., Atwater, H.A., Smith, D.R.: Subwavelength integrated photonics. Nature. 560, 565 (2018)

    Article  ADS  Google Scholar 

  8. Reim, K.F., Nunn, J., Jin, X.M., Michelberger, P.S., Champion, T.F.M., England, D.G., Lee, K.C., Kolthammer, W.S., Langford, N.K., Walmsley, I.A.: Multipulse addressing of a Raman quantum memory: configurable beam splitting and efficient readout. Phys. Rev. Lett. 108, 263602 (2012)

    Article  ADS  Google Scholar 

  9. Park, K.K., Zhao, T.M., Lee, J.C., Chough, Y.T., Kim, Y.H.: Coherent and dynamic beam splitting based on light storage in cold atoms. Sci. Rep. 6, 34279 (2016)

    Article  ADS  Google Scholar 

  10. Xiao, Y., Klein, M., Hohensee, M., Jiang, L., Phillips, D.F., Lukin, M., Walsworth, R.L.: Slow light beam splitter. Phys. Rev. Lett. 101, 043601 (2008)

    Article  ADS  Google Scholar 

  11. De Sio, L., Tedesco, A., Tabirian, N., Umeton, C.: Optically controlled holographic beam splitter. Appl. Phys. Lett. 97, 183507 (2010)

    Article  ADS  Google Scholar 

  12. Huisman, S.R., Huisman, T.J., Goorden, S.A., Mosk, A.P., Pinkse, P.W.H.: Programming balanced optical beam splitters in white paint. Opt. Express 22, 8320 (2014)

    Article  ADS  Google Scholar 

  13. Shen, B., Wang, P., Polson, R., Menon, R.: An integrated-nanophotonics polarization beamsplitter with 2.4 x 2.4 mu m(2) footprint. Nat. Photonics 9, 378 (2015)

    Article  ADS  Google Scholar 

  14. Zhu, S., Liu, Y., Shi, L., Xu, X., Yuan, S., Liu, N., Zhang, X.: Tunable polarization beam splitter based on optofluidic ring resonator. Opt. Express 24, 17511 (2016)

    Article  ADS  Google Scholar 

  15. Pittman, T.B., Jacobs, B.C., Franson, J.D.: Probabilistic quantum logic operations using polarizing beam splitters. Phys. Rev. A 64, 062311 (2001)

    Article  ADS  Google Scholar 

  16. Zhang, Y.L., Zhang, Y., Li, B.J.: Optical switches and logic gates based on self-collimated beams in two-dimensional photonic crystals. Opt. Express 15, 9287 (2007)

    Article  ADS  Google Scholar 

  17. Gottesman, D., Chuang, I.L.: Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390 (1999)

    Article  ADS  Google Scholar 

  18. Fukuda, H., Yamada, K., Tsuchizawa, T., Watanabe, T., Shinojima, H., Itabashi, S.: Ultrasmall polarization splitter based on silicon wire waveguides. Opt. Express 14, 12401 (2006)

    Article  ADS  Google Scholar 

  19. Hong, J.M., Ryu, H.H., Park, S.R., Jeong, J.W., Lee, S.G., Lee, E.H., Park, S.G., Woo, D., Kim, S., Beom-Hoan, O.: Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application. IEEE Photonics Technol. Lett. 15, 72 (2003)

    Article  ADS  Google Scholar 

  20. Rani, P., Kalra, Y., Sinha, R.K.: Complete photonic bandgap-based polarization splitter on silicon-on-insulator platform. J. Nanophotonics 10, 026023 (2016)

    Article  ADS  Google Scholar 

  21. Alrifai, R., Coda, V., Rangelov, A.A., Montemezzani, G.: Broadband integrated polarization beam splitting based on anisotropic adiabatic transfer of light. Phys. Rev. A 100, 063841 (2019)

    Article  ADS  Google Scholar 

  22. Li, Y.P., Wang, F.X., Chen, W., Zhang, G.W., Yin, Z.Q., He, D.Y., Wang, S., Guo, G.C., Han, Z.F.: Experimental realization of a resource-saving polarization-independent orbital-angular-momentum-preserving tunable beam splitter. Opt. Lett. 44, 755 (2019)

    Article  ADS  Google Scholar 

  23. Lutherdavies, B., Yang, X.P.: Wave-guides and y-junctions formed in bulk media by using dark spatial solitons. Opt. Lett. 17, 496 (1992)

    Article  ADS  Google Scholar 

  24. Guo, A., Henry, M., Salamo, G.J., Segev, M., Wood, G.L.: Fixing multiple waveguides induced by photorefractive solitons: directional couplers and beam splitters. Opt. Lett. 26, 1274 (2001)

    Article  ADS  Google Scholar 

  25. Steiglitz, K.: Soliton-guided phase shifter and beam splitter. Phys. Rev. A 81, 033835 (2010)

    Article  ADS  Google Scholar 

  26. Shou, C., Huang, G.X.: Slow-light soliton beam splitters. Phys. Rev. A 99, 043821 (2019)

    Article  ADS  Google Scholar 

  27. Pu, S., Hou, C., Zhan, K., Du, Y.: Beam splitters in inhomogeneous nonlocal media. Phys. Scr. 86, 025404 (2012)

    Article  ADS  Google Scholar 

  28. Sakaguchi, H., Malomed, B.A.: Matter-wave soliton interferometer based on a nonlinear splitter. New J. Phys. 18, 025020 (2016)

    Article  ADS  MATH  Google Scholar 

  29. André, A., Lukin, M.D.: Manipulating light pulses via dynamically controlled photonic band gap. Phys. Rev. Lett. 89, 143602 (2002)

    Article  ADS  Google Scholar 

  30. Bajcsy, M., Zibrov, A.S., Lukin, M.D.: Stationary pulses of light in an atomic medium. Nature (London) 426, 638 (2003)

    Article  ADS  Google Scholar 

  31. Andre, A., Bajcsy, M., Zibrov, A.S., Lukin, M.D.: Nonlinear optics with stationary pulses of light. Phys. Rev. Lett. 94, 063902 (2005)

    Article  ADS  Google Scholar 

  32. Qiu, T.H., Li, H., Xie, M.: Coherent generation and manipulation of stationary light pulses encoded in degrees of freedom of polarization and orbital angular momentum. Phys. Rev. A 100, 013844 (2019)

    Article  ADS  Google Scholar 

  33. Moiseev, S.A., Sidorova, A.I., Ham, B.S.: Stationary and quasistationary light pulses in three-level cold atomic systems. Phys. Rev. A 89, 043802 (2014)

    Article  ADS  Google Scholar 

  34. Xue, Y., Ham, B.S.: Investigation of temporal pulse splitting in a three-level cold-atom ensemble. Phys. Rev. A 78, 053830 (2008)

    Article  ADS  Google Scholar 

  35. Lin, Y.W., Liao, W.T., Peters, T., Chou, H.C., Wang, J.S., Cho, H.W., Kuan, P.C., Yu, I.A.: Stationary Light Pulses in Cold Atomic Media and without Bragg Gratings. Phys. Rev. Lett. 102, 213601 (2009)

    Article  ADS  Google Scholar 

  36. Iakoupov, I., Borregaard, J., S\(\phi \)rensen, A.S., : Controlled-PHASE gate for photons based on stationary light. Phys. Rev. Lett. 120, 010502 (2018)

  37. Everett, J.L., Campbell, G.T., Cho, Y.W., Vernaz-Gris, P., Higginbottom, D.B., Pinel, O., Robins, N.P., Lam, P.K., Buchler, B.C.: Dynamical observations of self-stabilizing stationary light. Nat. Photonics 13, 68 (2016)

    Google Scholar 

  38. Park, K.K., Cho, Y.W., Chough, Y.T., Kim, Y.H.: Experimental Demonstration of Quantum Stationary Light Pulses in an Atomic Ensemble. Phys. Rev. X 8, 021016 (2018)

    Google Scholar 

  39. Fleischhauer, M., Lukin, M.D.: Dark-state polaritons in electromagnetically induced transparency. Phys. Rev. Lett. 84, 5094 (2000)

    Article  ADS  Google Scholar 

  40. Mirza, I.M., van Enk, S.J., Kimble, H.J.: Single-photon time-dependent spectra in coupled cavity arrays. J. Opt. Soc. Amer. B 30, 2640 (2013)

    Article  ADS  Google Scholar 

  41. Yoshimi, H., Yamaguchi, T., Ota, Y., Arakawa, Y., Iwamoto, S.: Slow light waveguides in topological valley photonic crystals. Opt. Lett. 45, 2648 (2020)

    Article  ADS  Google Scholar 

  42. Calajó, G., Ciccarello, F., Chang, D., Rabl, P.: Atom-field dressed states in slow-light waveguide QED. Phys. Rev. A 93, 033833 (2016)

    Article  ADS  Google Scholar 

  43. Safavi-Naeini, A.H., Mayer Alegre, T.P., Chan, J., Eichenfield, M., Winger, M., Lin, Q., Hill, J.T., Chang, D.E., Painter, O.: Electromagnetically induced transparency and slow light with optomechanics. Nature 472, 69 (2011)

    Article  ADS  Google Scholar 

  44. Long, J.L., Ku, H.S., Wu, X., Gu, X., Lake, R.E., Bal, M., Lin, Y.X., Pappas, D.P.: Electromagnetically Induced Transparency in circuit quantum electrodynamics with nested polariton states. Phys. Rev. Lett. 120, 083602 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grants Nos. 11604174, 11704214, 11975132 and 61772295), by Natural Science Foundation of Shandong Province (Grant No. ZR2019YQ001), and by Natural Science Foundation of Jiangxi Provincial Education Department (Grant No. GJJ191683).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianhui Qiu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, T., Li, H., Xie, M. et al. Efficient polarization beam splitter based on the optimized stationary light pulse. Quantum Inf Process 20, 115 (2021). https://doi.org/10.1007/s11128-021-03050-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03050-y

Keywords

Navigation