Skip to main content

Advertisement

Log in

Multi-observable uncertainty equality based on the sum of standard deviations in the qubit system

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We construct a multi-observable uncertainty equality as well as an inequality based on the sum of standard deviations in the qubit system. Firstly, an uncertainty equality as well as an inequality is formulated, and we demonstrate that the new uncertainty inequality is tighter than other recent uncertainty relations. Then, a proof, that the triviality problem of the product form uncertainty relation can be completely fixed by the obtained uncertainty relation, is presented. Finally, we show that the uncertainty equality can be used as a measure of the mixedness of the system which usually is expensive in terms of resources involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Heisenberg, W.: Über den anschaulichen Inhalt derquantentheoretischen Kinematik und Mechanik. Z. Phys. 43, 172 (1927)

    Article  ADS  Google Scholar 

  2. Robertson, H.P.: The uncertainty principle. Phys. Rev. 34, 163 (1929)

    Article  ADS  Google Scholar 

  3. Schrodinger, E.: Sitzungsberichte der Preussischen Akademie der Wissenschaften. Physikalisch-mathematische Klasse 14, 296 (1930)

    Google Scholar 

  4. Kraus, K.: Complementary observables and uncertainty relations. Phys. Rev. D 35, 3070 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  5. Zhang, G.F.: Sudden death of entanglement of a quantum model. Chin. Phys. 16, 1855 (2007)

    Article  Google Scholar 

  6. Berta, M., Christandl, M., Colbeck, R., Renes, J.M., Renner, R.: The uncertainty principle in the presence of quantum memory. Nat. Phys. 6, 659 (2010)

    Article  Google Scholar 

  7. Oppenheim, J., Wehner, S.: The uncertainty principle determines the nonlocality of quantum mechanics. Science 330, 1072 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  8. Li, C.F., Xu, J.S., Li, K., Guo, G.C.: Experimental investigation of the entanglement-assisted entropic uncertainty principle. Nat. Phys. 7, 752 (2011)

    Article  Google Scholar 

  9. Wehner, S., Winter, A.: Entropic uncertainty relations: a survey. New J. Phys. 12, 025009 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  10. Tomamichel, M., Renner, R.: Uncertainty relation for smooth entropies. Phys. Rev. Lett. 106, 110506 (2011)

    Article  ADS  Google Scholar 

  11. Coles, P.J., Colbeck, R., Yu, L., Zwolak, M.: Uncertainty relations from simple entropic properties. Phys. Rev. Lett. 108, 210405 (2012)

    Article  ADS  Google Scholar 

  12. Xu, Z.Y., Yang, W.L., Feng, M.: Quantum-memory-assisted entropic uncertainty relation under noise. Phys. Rev. A 86, 012113 (2012)

    Article  ADS  Google Scholar 

  13. Hofmann, H.F., Takeuchi, S.: Violation of local uncertainty relations as a signature of entanglement. Phys. Rev. A 68, 032103 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  14. Guhne, O.: Characterizing entanglement via uncertainty relations. Phys. Rev. Lett. 92, 117903 (2004)

    Article  ADS  Google Scholar 

  15. Schwonnek, R., Dammeier, L., Werner, R.F.: State-independent uncertainty relations and entanglement detection in noisy systems. Phys. Rev. Lett. 119, 170404 (2017)

    Article  ADS  Google Scholar 

  16. Walls, D.F., Zoller, P.: Reduced quantum fluctuations in resonance fluorescence. Phys. Rev. Lett. 47, 709 (1981)

    Article  ADS  Google Scholar 

  17. Wineland, D.J., Bollinger, J.J., Itano, W.M., Moore, F.L., Heinzen, D.J.: Spin squeezing and reduced quantum noise in spectroscopy. Phys. Rev. A 46, R6797 (1992)

    Article  ADS  Google Scholar 

  18. Kitagawa, M., Ueda, M.: Squeezed spin states. Phys. Rev. A 47, 5138 (1993)

    Article  ADS  Google Scholar 

  19. Ma, J., Wang, X.G., Sun, C.P., Nori, F.: Quantum spin squeezing. Phys. Rep. 509, 89 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  20. Zhang, G.F., Li, S.S.: Entanglement in a spin-one spin chain. Solid State Commun. 138, 17 (2006)

    Article  ADS  Google Scholar 

  21. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum metrology. Phys. Rev. Lett. 96, 010401 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  22. Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photon. 5, 222 (2011)

    Article  ADS  Google Scholar 

  23. Maccone, L., Pati, A.K.: Stronger uncertainty relations for all incompatible observables. Phys. Rev. Lett. 113, 260401 (2014)

    Article  ADS  Google Scholar 

  24. Song, Q.C., Qiao, C.F.: Stronger Schrödinger-like uncertainty relations. Phys. Lett. A 380, 2925 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  25. Chen, B., Fei, S.M.: Sum uncertainty relations for arbitrary N incompatible observables. Sci. Rep. 5, 14238 (2015)

    Article  ADS  Google Scholar 

  26. Zheng, X., Zhang, G.F.: The effects of mixedness and entanglement on the properties of the entropic uncertainty in Heisenberg model with Dzyaloshinski–Moriya interaction. Quantum Inf. Process. 16, 1 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  27. Zheng, X., Zhang, G.F.: Variance-based uncertainty relation for incompatible observers. Quantum Inf. Process. 16, 167 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  28. Yao, Y., Xiao, X., Wang, X.G., Sun, C.P.: Implications and applications of the variance-based uncertainty equalities. Phys. Rev. A 91, 062113 (2015)

    Article  ADS  Google Scholar 

  29. Mal, S., Pramanik, T., Majumdar, A.S.: Detecting mixedness of qutrit systems using the uncertainty relation. Phys. Rev. A 87, 012105 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 11574022 and 11174024) and the Open Project Program of State Key Laboratory of Low-Dimensional Quantum Physics (Tsinghua University) Grants No. KF201407 and also supported by the Open Project Program of State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, China (No. Y4KF201CJ1), and Beijing Higher Education (Young Elite Teacher Project) YETP 1141.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guofeng Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Xiao Zheng and Shaoqiang Ma have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, X., Ma, S. & Zhang, G. Multi-observable uncertainty equality based on the sum of standard deviations in the qubit system. Quantum Inf Process 19, 116 (2020). https://doi.org/10.1007/s11128-020-2609-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-2609-7

Keywords

Navigation