Response to “Comment on ‘Controlled mutual quantum entity authentication with an untrusted third party’”

Abstract

Recently, Wang et al. (Quantum Inf Process, QINP-D-18-00478R1, 2019) commented that a third party can obtain an authentication key from communicating parties by performing an entanglement swapping attack on the controlled mutual quantum entity authentication (CMQEA) protocol. In this response, we apply this attack to the CMQEA protocol and analyze whether this claim is actually valid. From the analysis, we provide a confirmation that this attack can be prevented using existing countermeasures. In addition, we propose an improved protocol that is fundamentally robust to entanglement swapping attack.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Kang, M.S., Heo, J., Hong, C.H., Yang, H.J., Han, S.W., Moon, S.: Controlled mutual quantum entity authentication with an untrusted third party. Quantum Inf. Process. 17, 159 (2018)

    ADS  MathSciNet  Article  Google Scholar 

  2. 2.

    Kang, M.S., Hong, C.H., Heo, J., Lim, J.I., Yang, H.J.: Controlled mutual quantum entity authentication using entanglement swapping. Chin. Phys. B 24, 090306 (2015)

    Article  Google Scholar 

  3. 3.

    Gao, G., Wang, Y.: Cryptanalysis of controlled mutual quantum entity authentication using entanglement swapping. Commun. Theor. Phys. 67(1), 33–36 (2017)

    ADS  Article  Google Scholar 

  4. 4.

    Wang, Q., Zhang, S., Wang, S., Shi, R.: Comment on “Controlled mutual quantum entity authentication with an untrusted third party”. Quantum Inf. Process. (2019). https://doi.org/10.1007/s11128-020-2611-0

    Article  Google Scholar 

  5. 5.

    Liu, Z.H., Chen, H.W.: Analyzing and revising quantum dialogue without information leakage based on the entanglement swapping between any two bell states and the shared secret bell state. Int. J. Theor. Phys. 58(2), 575–583 (2019)

    Article  Google Scholar 

  6. 6.

    Pan, J.W., Zeilinger, A.: Greenberger–Horne–Zeilinger-state analyzer. Phys. Rev. A 57, 2208–2211 (1998)

    ADS  MathSciNet  Article  Google Scholar 

  7. 7.

    Pan, J.W., Daniell, M., Gasparoni, S., Weihs, G., Zeilinger, A.: Experimental demonstration of four-photon entanglement and high-fidelity teleportation. Phys. Rev. Lett. 86, 4435–4438 (2001)

    ADS  Article  Google Scholar 

  8. 8.

    Zhu, F., Zhang, W., Sheng, Y., et al.: Experimental long-distance quantum secure direct communication. Sci. Bull. 62(22), 1519–1524 (2017)

    Article  Google Scholar 

  9. 9.

    Kim, Y.S., Pramanik, T., Cho, Y., Yang, M., Han, S.W., Lee, S.Y., Kang, M.S., Moon, S.: Informationally symmetrical Bell state preparation and measurement. Opt. Express 26(22), 29539–29549 (2018)

    ADS  Article  Google Scholar 

  10. 10.

    Heo, J., Hong, C.H., Kang, M.S., Yang, H., Yang, H.J., Hong, J.P., Choi, S.G.: Implementation of controlled quantum teleportation with an arbitrator for secure quantum channels via quantum dots inside optical cavities. Sci. Rep. 7, 14905 (2017)

    ADS  Article  Google Scholar 

  11. 11.

    Heo, J., Kang, M.S., Hong, C.H., Choi, S.G., Hong, J.P.: Scheme for secure swapping two unknown states of a photonic qubit and an electron-spin qubit using simultaneous quantum transmission and teleportation via quantum dots inside single-sided optical cavities. Phys. Lett. A 381, 1845 (2017)

    ADS  Article  Google Scholar 

  12. 12.

    Xia, Y., Song, J., Song, H.S.: Quantum dialogue using non-maximally entangled states based on entanglement swapping. Phys. Scr. 76(4), 363–369 (2007)

    ADS  MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the NRF programs (2019R1A2C2006381, 2019M3E4A107866011, 2019M3E4A1079777), and the KIST research program (2E30620). C.-H. Hong and H.-J. Yang are supported by the R&D Convergence program of NST (National Research Council of Science and Technology) of Republic of Korea (Grant No. CAP-18-08-KRISS).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sang-Wook Han.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This is the reply to the commentary https://doi.org/10.1007/s11128-020-2611-0.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kang, MS., Heo, J., Hong, CH. et al. Response to “Comment on ‘Controlled mutual quantum entity authentication with an untrusted third party’”. Quantum Inf Process 19, 124 (2020). https://doi.org/10.1007/s11128-020-2608-8

Download citation

Keywords

  • Quantum entity authentication
  • GHZ-like state
  • Untrusted third party
  • Entanglement swapping attack