Skip to main content
Log in

Bidirectional teleportation for underwater quantum communications

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this work, we evaluate the performance of a bidirectional teleportation protocol on an IBM Q Experience quantum processor of six or more qubits. Moreover, we analyze the viability in the implementation of the mentioned protocol in a configuration composed by two submerged nuclear submarines on opposite sides of the ocean and a satellite that generates and distributes entangled pairs, and transmits optical bits of disambiguation to those buoys located on the sea surface, and associated to those submerged submarines. The results of the implementations on a 16-qubits Melbourne IBM Q processor turned out to be extremely satisfactory with a low margin of error considering that this processor does not belong to the Premium family of IBM Q, which implies a high presence of decoherence and sensitivity to flip errors even in few-gate quantum circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The experimental data that support the findings of this study are available in ResearchGate with the identifier https://doi.org/10.13140/RG.2.2.21596.62087.

References

  1. Bennett, C.H., et al.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  2. Bouwmeester, D., et al.: Experimental quantum teleportation. Nature 390, 575–579 (1997)

    Article  ADS  Google Scholar 

  3. Bouwmeester, B.D., et al.: Experimental quantum teleportation. Philos. Trans. R. Soc. Lond. A 356, 1733–1737 (1998)

    Article  ADS  Google Scholar 

  4. Boschi, D., et al.: Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 80, 1121 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  5. Kurucz, Z., Koniorczyk, Z., Janszky, J.: Teleportation with partially entangled states. Fortschr. Phys. 49(10–11), 1019–1025 (2001)

    Article  MathSciNet  Google Scholar 

  6. Furusawa, A., van Loock, P.: Quantum Teleportation and Entanglement: A Hybrid Approach to Optical Quantum Information Processing. Wyley-VCH, Weinheim (2011)

    Book  Google Scholar 

  7. IBM Q Experience https://quantum-computing.ibm.com/. Accessed 07 September 2020

  8. Tarantino, S., et al. Feasibility of quantum communications in aquatic scenarios. Optik, 164639 (2020)

  9. Arnon, S., et al.: Non-line-of-sight underwater optical wireless communication network. J. Opt. Soc. Am. A 26, 3 (2009)

    Google Scholar 

  10. Bouchard, F., et al.: Quantum cryptography with twisted photons through an outdoor underwater channel. Opt. Express 26(17), 22563–22573 (2018)

    Article  ADS  Google Scholar 

  11. Bennett, C.H., Brassard, G. Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computing System Signal Process. Bangalore, India 175, 8 (1984)

  12. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  13. Skyloom Global Corp. https://www.skyloom.co/. Accessed 07 September 2020

  14. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  15. Kaye, P., Laflamme, R., Mosca, M.: An Introduction to Quantum Computing. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

  16. Stolze, J., Suter, D.: Quantum Computing: A Short Course from Theory to Experiment. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (2007)

    MATH  Google Scholar 

  17. Busch, P., Lahti, P., Pellonpää, J.P., Ylinen, K.: Quantum Measurement. Springer, New York (2016)

    Book  Google Scholar 

  18. Schlosshauer, M.: Decoherence, the measurement problem, and interpretations of quantum mechanics. Rev. Mod. Phys. 76(4), 1267–1305 (2005)

    Article  ADS  Google Scholar 

  19. Nakahara, M., Ohmi, T.: Quantum Computing: From Linear Algebra to Physical Realizations. CRC Press, Boca Raton (2008)

    Book  Google Scholar 

  20. Kollmitzer, C., Pivk, M. (eds.): Lecture Notes in Physics 797: Applied Quantum Cryptography. Springer, Heidelberg (2010)

    Google Scholar 

  21. Iyengar, S.S., Mastriani, M.: Satellite quantum repeaters for a quantum Internet. Preprint arXiv:2005.03450 (2020)

  22. Algorithmic Assertions https://algassert.com/quirk. Accessed 07 September 2020

  23. Zhou, R.-G., et al.: Asymmetric bidirectional controlled teleportation by using nine-qubit entangled state in noisy environment. IEEE Access 7, 75247–75264 (2019)

    Article  Google Scholar 

  24. Chen, J., et al.: Bidirectional quantum teleportation by using a four-qubit GHZ state and two bell states. IEEE Access 8, 28925–28933 (2020)

    Article  Google Scholar 

  25. Yang, G., et al.: Bidirectional multi-qubit quantum teleportation in noisy channel aided with weak measurement. Chin. Phys. B 26(4), 040305 (2017)

    Article  ADS  Google Scholar 

  26. Liao, C., et al.: Bidirectional quantum teleportation controlled by single-qutrit state. Acta Photon. Sin. 26(5), 0527002 (2017)

    Article  Google Scholar 

  27. Audretsch, J.: Entangled Systems: New Directions in Quantum Physics. Wiley-VCH Verlag GmbH & Co., Weinheim (2007)

    Book  Google Scholar 

  28. Jaeger, G.: Entanglement, information, and the interpretation of quantum mechanics. In: The Frontiers Collection, Springer-Verlag. Berlin, Germany (2009)

  29. Horodecki R, et al.: Quantum entanglement. Preprint arXiv:0702225 (2007)

  30. Ren, J., et al.: Ground-to-satellite quantum teleportation. Nature 549, 70–73 (2017)

    Article  ADS  Google Scholar 

  31. Acacia Communications https://acacia-inc.com/blog/undersea-fiber-cables-are-connecting-our-world. Accessed 07 September 2020

  32. Space AI Inc. http://www.spaceai.com/. Accessed 07 September 2020

  33. Boone, K., et al.: Entanglement over global distances via quantum repeaters with satellite links. Phys. Rev. A 91(5), 052325 (2015)

    Article  ADS  Google Scholar 

  34. Liao, S.K., et al.: Satellite-to-ground quantum key distribution. Nature 549, 43–47 (2017)

    Article  ADS  Google Scholar 

  35. Hasegawa, Y., et al.: Experimental time-reversed adaptive Bell measurement towards all-photonic quantum repeaters. Nat. Commun. 10, 378 (2019)

    Article  ADS  Google Scholar 

  36. Saeed, N., et al.: CubeSat communications: recent advances and future challenges. Preprint arXiv:1908.09501 (2020)

  37. Rose, T.S., et al.: Optical communications downlink from a lowearth orbiting 15U CubeSat. Opt. Express 27(17), 24382–24392 (2019)

    Article  ADS  Google Scholar 

  38. Alkholidi, A.G., Altowij, K.S.: Free space optical communications: theory and practices. Chapter 5 (Intech, 2014) 159–212 http://dx.doi.org/10.5772/58884

  39. Hemmati, H., Lesh, J.R.: Laser transmitter aims at laser beacon (NASA ID 19930000711, 1993) https://ntrs.nasa.gov/

  40. Piazzolla, S.: Atmospheric channel. In: Hemmati, H. (ed.) Near-Earth Laser Communications, 2nd edn, pp. 237–270. CRC Press, Boca Raton (2020)

    Google Scholar 

  41. Liu, H.-Y., et al.: Drone-based all-weather entanglement distribution. Preprint arXiv:1905.09527 (2019)

  42. Floreano, D., Wood, R.J.: Science, technology and the future of small autonomous drones. Nature 521, 460–466 (2015)

    Article  ADS  Google Scholar 

  43. Kumar, V., Michael, N.: Opportunities and challenges with autonomous micro aerial vehicles. Int. J. Robot. Res. 31, 1279–1291 (2012)

    Article  Google Scholar 

  44. Bang, J., Ryu, J., Kaszlikowski, D.: Fidelity deviation in quantum teleportation. Preprint arXiv:1801.06115 (2018)

  45. Hofmann, H. F., Ide, T., Kobayashi, T., Furusawa, A.: Fidelity and information in the quantum teleportation of continuous variables. Preprint arXiv:0003053 (2000)

  46. Oh, S., Lee, S., Lee, H.W.: Fidelity of quantum teleportation through noisy channels. Phys. Rev. A 66, 022316 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  47. Żukowski, M., et al.: Event-ready-detectors bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287–4290 (1993)

    Article  ADS  Google Scholar 

  48. Pan, J.-W., et al.: Experimental entanglement swapping: entangling photons that never interacted. Phys. Rev. Lett. 80, 3891–3894 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  49. Jennewein, T., et al.: Experimental nonlocality proof of quantum teleportation and entanglement swapping. Phys. Rev. Lett. 88, 017903 (2001)

    Article  ADS  Google Scholar 

  50. Tsujimoto, Y., et al.: High-fidelity entanglement swapping and generation of three-qubit GHZ state using asynchronous telecom photon pair sources. Sci. Rep. 8, 1446 (2018)

    Article  ADS  Google Scholar 

  51. Jin, R.-B., et al.: Highly efficient entanglement swapping and teleportation at telecom wavelength. Sci. Rep. 5, 9333 (2015)

    Article  Google Scholar 

  52. Schmid, C., et al.: Quantum teleportation and entanglement swapping with linear optics logic gates. New J. Phys. 11, 033008 (2009)

    Article  ADS  Google Scholar 

  53. de Riedmatten, H., et al.: Long-distance entanglement swapping with photons from separated sources. Phys. Rev. A 71, 050302 (2005)

    Article  Google Scholar 

  54. Dür, W., Lamprecht, R., Heusler, S.: Towards a quantum internet. Eur. J. Phys. 38, 043001 (2017)

    Article  Google Scholar 

  55. Kimble, H.J.: The quantum internet. Nature 453, 1023–1030 (2008)

    Article  ADS  Google Scholar 

  56. Gyongyosi, L., Imre, S.: Entanglement accessibility measures for the quantum internet. Quant. Inf. Process. 19, 115 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  57. Gyongyosi, L., Imre, S.: Entanglement access control for the quantum internet. Preprint arXiv:1905.00256 (2019)

  58. Gyongyosi, L., Imre, S.: Opportunistic entanglement distribution for the quantum internet. Preprint arXiv:1905.00258v1 (2019)

Download references

Acknowledgements

M. Mastriani thanks to Marcos Franceschini, CEO of Skyloom Global Corporation for his support and permanent predisposition to answer all our queries. We thank the IBM Q team for providing the entire scientific community with such simple, convenient and free access to so many tools: circuit composer, simulator, qiskit, as well as so many of their quantum processing units, as those of 1, 5 and 16 qubits, without which this investigation would not have been completed.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

SSI is responsible for the project’s conceptualization, and management, which concludes in this paper. The effort was planned and supervised by SSI and co-supervised by KJKL. SSI runned the research and development team. MM conceived the satellite configuration, designed the quantum protocol, performed the experiment on the IBM Q Experience QPU, and wrote the first version of the paper. SSI and KJKL analyzed the results. SSI and KJKL reviewed the first version of the paper. SSI and KJKL wrote the final version of the paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mario Mastriani.

Ethics declarations

Conflict of interest

Authors declare they has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mastriani, M., Iyengar, S.S. & Latesh Kumar, K.J. Bidirectional teleportation for underwater quantum communications. Quantum Inf Process 20, 22 (2021). https://doi.org/10.1007/s11128-020-02970-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02970-5

Keywords

Navigation