Skip to main content
Log in

Quantum randomness protected against detection loophole attacks

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Device and semi-device-independent private quantum randomness generators are crucial for applications requiring private randomness. However, they are vulnerable to detection inefficiency attacks and this limits severely their usage for practical purposes. Here, we present a method for protecting semi-device-independent private quantum randomness generators in prepare-and-measure scenarios against detection inefficiency attacks. The key idea is the introduction of a blocking device that adds failures in the communication between the preparation and measurement devices. We prove that, for any detection efficiency, there is a blocking rate that provides protection against these attacks. We experimentally demonstrate the generation of private randomness using weak coherent states and standard avalanche photo-detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. For example, the internal counters of P and M differ by n rounds with some probability, depending on n and the blocking rate.

References

  1. Rarity, J.G., Owens, P.C.M., Tapster, P.R.: Quantum random-number generation and key sharing. J. Mod. Opt. 41, 2435 (1994)

    Article  ADS  Google Scholar 

  2. National Institute of Standards and Technology. Computer Security Division. Computer Security Resource Center

  3. Colbeck, R.: Quantum and Relativistic Protocols for Secure Multi-Party Computation. Ph.D. Thesis, Cambridge University. arXiv:0911.3814v2 (2009)

  4. Pironio, S., Massar, S.: Security of practical private randomness generation. Phys. Rev. A 87, 012336 (2013)

    Article  ADS  Google Scholar 

  5. Pironio, S., Acín, A., Massar, S., Boyer de la Giroday, A., Matsukevich, D.N., Maunz, P., Olmschenk, S., Hayes, D., Luo, L., Manning, T.A., Monroe, C.: Random numbers certified by Bell’s theorem. Nature 464, 1021 (2010)

    Article  ADS  Google Scholar 

  6. Pawłowski, M., Brunner, N.: Semi-device-independent security of one-way quantum key distribution. Phys. Rev. A 84, 010302 (2011)

    Article  ADS  Google Scholar 

  7. Li, H.-W., Pawłowski, M., Yin, Z.-Q., Guo, G.-C., Han, Z.-F.: Semi-device-independent randomness certification using \(n\rightarrow 1\) quantum random access codes. Phys. Rev. A 85, 052308 (2012)

    Article  ADS  Google Scholar 

  8. Mironowicz, P., Tavakoli, A., Hameedi, A., Marques, B., Pawłowski, M., Bourennane, M.: Increased certification of semi-device independent random numbers using many inputs and more post-processing. New J. Phys. 18, 065004 (2016)

    Article  ADS  Google Scholar 

  9. Lunghi, T., Brask, J.B., Lim, C.C.W., Lavigne, Q., Bowles, J., Martin, A., Zbinden, H., Brunner, N.: Self-testing quantum random number generator. Phys. Rev. Lett. 114, 150501 (2015)

    Article  ADS  Google Scholar 

  10. Cao, Z., Zhou, H., Ma, X.: Loss-tolerant measurement-device-independent quantum random number generation. New J. Phys. 17, 125011 (2015)

    Article  ADS  Google Scholar 

  11. Cao, Z., Zhou, H., Yuan, X., Ma, X.: Source-independent quantum random number generation. Phys. Rev. X 6, 011020 (2016)

    Google Scholar 

  12. Marangon, D.G., Vallone, G., Villoresi, P.: Source-device-independent ultrafast quantum random number generation. Phys. Rev. Lett. 118, 060503 (2017)

    Article  ADS  Google Scholar 

  13. Brask, J.B., Martin, A., Esposito, W., Houlmann, R., Bowles, J., Zbinden, H., Brunner, N.: Megahertz-rate semi-device-independent quantum random number generators based on unambiguous state discrimination. Phys. Rev. Appl. 7, 054018 (2017)

    Article  ADS  Google Scholar 

  14. Dall’Arno, M., Passaro, E., Gallego, R., Pawłowski, M., Acín, A.: Detection loophole attacks on semi-device-independent quantum and classical protocols. Quant. Inf. Comput. 15, 37 (2015)

    MathSciNet  Google Scholar 

  15. Acín, A., Cavalcanti, D., Passaro, E., Pironio, S., Skrzypczyk, P.: Necessary detection efficiencies for secure quantum key distribution and bound randomness. Phys. Rev. A 93, 012319 (2016)

    Article  ADS  Google Scholar 

  16. Hameedi, A., Marques, B., Mironowicz, P., Saha, D., Pawłowski, M., Bourennane, M.: Experimental test of nonclassicality with arbitrarily low detection efficiency. Phys. Rev. A 102, 032621 (2020)

    Article  ADS  Google Scholar 

  17. Renner, R.: Security of Quantum Key Distribution. arXiv:quant-ph/0512258 (2005)

  18. Koenig, R., Renner, R., Schaffner, C.: The operational meaning of min- and max-entropy. IEEE Trans. Inf. Theory 55, 4337 (2009)

    Article  MathSciNet  Google Scholar 

  19. Grier, D.G.: A revolution in optical manipulation. Nature 424, 810 (2003)

    Article  ADS  Google Scholar 

  20. Lima, G., Vargas, A., Neves, L., Guzmán, R., Saavedra, C.: Manipulating spatial qudit states with programmable optical devices. Opt. Express 17, 10688 (2009)

    Article  ADS  Google Scholar 

  21. Neves, L., Lima, G., Gómez, J.A., Monken, C.H., Saavedra, C., Pádua, S.: Generation of entangled states of qudits using twin photons. Phys. Rev. Lett. 94, 100501 (2005)

    Article  ADS  Google Scholar 

  22. Goyeneche, D., Cañas, G., Etcheverry, S., Gómez, E.S., Xavier, G.B., Lima, G., Delgado, A.: Five measurement bases determine pure quantum states on any dimension. Phys. Rev. Lett. 115, 090401 (2015)

    Article  ADS  Google Scholar 

  23. Cañas, G., Etcheverry, S., Gómez, E.S., Saavedra, C., Xavier, G.B., Lima, G., Cabello, A.: Experimental implementation of an eight-dimensional Kochen–Specker set and observation of its connection with the Greenberger–Horne–Zeilinger theorem. Phys. Rev. A 90, 012119 (2014)

    Article  ADS  Google Scholar 

  24. Aguilar, E.A., Farkas, M., Martínez, D., Alvarado, M., Cariñe, J., Xavier, G.B., Barra, J.F., Cañas, G., Pawłowski, M., Lima, G.: Certifying an irreducible 1024-dimensional photonic state using refined dimension witnesses. Phys. Rev. Lett. 120, 230503 (2018)

    Article  ADS  Google Scholar 

  25. Solís-Prosser, M.A., Fernándes, M.F., Jiménez, O., Delgado, A., Neves, L.: Experimental minimum-error quantum state discrimination in high dimensions. Phys. Rev. Lett. 118, 100501 (2017)

    Article  ADS  Google Scholar 

  26. Marques, B., Matoso, A.A., Pimenta, W.M., Gutiérrez-Esparza, A.J., Santos, M.F., Pádua, S.: Experimental simulation of decoherence in photonics qudits. Sci. Rep. 5, 16049 (2017)

    Article  ADS  Google Scholar 

  27. Torres-Ruiz, F.A., Lima, G., Delgado, A., Pádua, S., Saavedra, C.: Decoherence in a double-slit quantum eraser. Phys. Rev. A 81, 042104 (2010)

    Article  ADS  Google Scholar 

  28. Lima, G., Neves, L., Guzmán, R., Gómez, E.S., Nogueira, W.A.T., Delgado, A., Vargas, A., Saavedra, C.: Experimental quantum tomography of photonic qudits via mutually unbiased basis. Opt. Express 19, 3542 (2011)

    Article  ADS  Google Scholar 

  29. Etcheverry, S., Cañas, G., Gómez, E.S., Nogueira, W.A.T., Saavedra, C., Xavier, G.B., Lima, G.: Quantum key distribution session with 16-dimensional photonic states. Sci. Rep. 3, 2316 (2013)

    Article  ADS  Google Scholar 

  30. Moreno, I., Velásquez, P., Fernandez-Pousa, C.R., Sánchez-López, M.M., Mateos, F.: Jones matrix method for predicting and optimizing the optical modulation properties of a liquid-crystal display. J. Appl. Phys. 94, 3697 (2003)

    Article  ADS  Google Scholar 

  31. Liu, Y., Yuan, X., Li, M.H., Zhang, W., Zhao, Q., Zhong, J., Cao, Y., Li, Y.-H., Chen, L.-K., Li, H., Peng, T., Chen, Y.-A., Peng, C.-Z., Shi, S.-C., Wang, Z., You, L., Ma, X., Fan, J., Zhang, Q., Pan, J.-W.: High-speed device-independent quantum random number generation without a detection loophole. Phys. Rev. Lett. 120, 010503 (2018)

    Article  ADS  Google Scholar 

  32. Eaton, J.W., Bateman, D., Hauberg, S., Wehbring, R.: GNU Octave Version 4.2.0 Manual: A High-Level Interactive Language for Numerical Computations. http://www.gnu.org/software/octave/doc/interpreter (2016)

  33. Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 11, 625 (1999)

    Article  MathSciNet  Google Scholar 

  34. Löfberg, J.: YALMIP: a toolbox for modeling and optimization in MATLAB. In: IEEE International Symposium on Computer Aided Control Systems Design (2004). IEEE, New York, p. 284

  35. Li, H.-W., Yin, Z.-Q., Wu, Y.-C., Zou, X.-B., Wang, S., Chen, W., Guo, G.-C., Han, Z.-F.: Semi-device-independent random-number expansion without entanglement. Phys. Rev. A 84, 034301 (2011)

    Article  ADS  Google Scholar 

  36. Mironowicz, P., Li, H.W., Pawłowski, M.: Properties of dimension witnesses and their semi-definite programming relaxations. Phys. Rev. A 90, 022322 (2014)

    Article  ADS  Google Scholar 

  37. Ambainis, A., Nayak, A., Ta-Shma, A., Vazirani, U.: Dense quantum coding and quantum finite automata. J. ACM 49, 496 (2002)

    Article  MathSciNet  Google Scholar 

  38. Ambainis, A., Leung, D., Mancinska, L., Ozols, M.: Quantum random access codes with shared randomness. arXiv:0810.2937 (2008)

  39. Werner, R.F., Wolf, M.M.: Bell inequalities and entanglement. Quantum Info. Comput. 1, 1 (2001)

    MathSciNet  MATH  Google Scholar 

  40. Pál, K.F., Vértesi, T.: Maximal violation of a bipartite three-setting, two-outcome Bell inequality using infinite-dimensional quantum systems. Phys. Rev. A 82, 022116 (2010)

    Article  ADS  Google Scholar 

  41. Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev. 38, 49 (1996)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by Fondecyt 1200859, Fondecyt 1190933, Fondecyt 1190901, Fondecyt 1150101, and ANID—Millennium Science Initiative Program—ICN17_012. J.F.B. acknowledges support from Fondecyt 3170307. J.C. acknowledges support from ANID/REC/PAI77190088. A.C. acknowledges support from the Ministry of Science, Innovation and Universities (MICIU) Grant No. FIS2017-89609-P with FEDER funds, the Conserjería de Conocimiento, Investigación y Universidad, Junta de Andalucía and European Regional Development Fund (ERDF) Grant No. SOMM17/6105/UGR and the Knut and Alice Wallenberg Foundation project “Photonic Quantum Information”. G.B.X. acknowledges Ceniit Linköping University and the Swedish Research Council (VR 2017-04470) for financial support. P.M. and M.P are supported by a National Science Centre (NCN) grant 2014/14/E/ST2/00020 and FNP programme First TEAM (Grant No. First TEAM/2016-1/5), and P.M. by a DS Programs of the Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology. The support by the Foundation for Polish Science through IRAP project co-financed by the EU within the Smart Growth Operational Programme (Contract No. 2018/MAB/5) is acknowledged. P.M. thanks Krystyna Witalewska for help during the time of writing the manuscript. The optimizations have been performed using OCTAVE [32] with SeDuMi solver [33] and YALMIP toolbox [34].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Mironowicz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Guessing probability, min-entropy and randomness certification

The distribution of lengths of series of systems sent and not blocked by the blocking mechanism at a rate R is given by

$$\begin{aligned} P(R, k) = (1 - R)^{k-1} R, \end{aligned}$$
(12)

where \(k \ge 1\) is the number of systems in a series.

Let us denote by \(\alpha \) the ratio between the number of systems containing synchronization signal sent by P and the total number of systems sent by P, cf. the assumption III.

In a given series of transmitted systems of length k, the average number of photons before the first synchronizing system within that series is

$$\begin{aligned} \begin{aligned} F_\text {asyn}(\alpha , k)&= \left[ \sum _{i=0}^{k} i (1 - \alpha )^i \alpha \right] + k (1 - \alpha )^k \\&= \frac{1 - \alpha }{\alpha } \left( 1 - (1 - \alpha )^k\right) . \end{aligned} \end{aligned}$$
(13)

Using (13), we get that the probability that a particular photon received by M is not synchronized is

$$\begin{aligned} \begin{aligned} P_\text {asyn}(R, \alpha )&= \sum _{k=1}^{\infty } P(R, k) \frac{F_\text {asyn}(\alpha , k)}{k} \\&= \frac{1 - \alpha }{\alpha } \frac{R}{1 - R} \ln \left( \frac{\alpha + R - \alpha R}{R} \right) , \end{aligned} \end{aligned}$$
(14)

for \(\alpha > 0\) and \(P_\text {asyn}(R, 0) = 1\). Directly from the definition of \(\alpha \), the probability that the received system is a synchronization signal is

$$\begin{aligned} P_\text {sig}(R,\alpha ) = \alpha . \end{aligned}$$
(15)

The probability that a received system is synchronized and not carrying a synchronization signal is

$$\begin{aligned} P_\text {syn}(R, \alpha ) = 1 - P_\text {asyn}(R, \alpha ) - P_\text {sig}(R,\alpha ), \end{aligned}$$
(16)

for \(\alpha > 0\) and \(P_\text {syn}(R, 0) = 0\). One can easily calculate that . Let us define \(F_\text {syn}(R) \equiv \max _{\alpha \in [0,1]} P_\text {syn}(R, \alpha )\). Then,

$$\begin{aligned} \lim _{R \rightarrow 1^{-}} F_\text {syn}(R) = 0. \end{aligned}$$
(17)

If \({\mathbb {P}}\) is a mixture of distributions \({\mathbb {P}}_i\) with frequencies \(\{\omega _i\}\), \(\sum _i \omega _i = 1\), and an eavesdropper is aware which distribution i occurs, we have \(P_{guess}[{\mathbb {P}}] \equiv \sum _i \omega _i P_{guess}[{\mathbb {P}}_i]\).

Let us consider separately runs of the protocol without synchronization (abbreviated as “asyn”), runs containing synchronization signal (abbreviated as “sig”) and synchronized runs without the signal (abbreviated as “syn”).

Let \(P_{guess}^\text {asyn}(p,\eta ),P_{guess}^\text {sig}(p,\eta ),P_{guess}^\text {syn}(p,\eta )\) be functions providing upper bounds on the maximal average guessing probabilities, \(p_\text {asyn},p_\text {sig},p_\text {syn}\) be the average values of the certificate (3), and \(\eta _\text {asyn},\eta _\text {sig},\eta _\text {syn}\) be the detection efficiencies (2), in the respective runs. These values cannot be observed individually by a user, but each of them has impact on the observed values of (3) and (2).

Let \(\mathbf {p} \equiv (p_\text {asyn},p_\text {sig},p_\text {syn})\) and \(\mathbf {\eta } \equiv (\eta _\text {asyn},\eta _\text {sig},\eta _\text {syn})\). Note that \(p_\text {asyn} \le c_Q\), \(p_\text {sig} \le c_R\) and \(p_\text {syn} \le c_S(\eta _\text {syn})\). Let \({\mathscr {M}} \equiv \{\text {asyn}, \text {sig}, \text {syn}\}\), \({\bar{\eta }} \equiv \sum _{i \in {\mathscr {M}}} \eta _i P_i(R,\alpha ) \), and \(\omega _i \equiv \frac{\eta _i P_i(R,\alpha )}{{\bar{\eta }}}\) for \(i \in {\mathscr {M}}\), thus \(\sum _{i \in {\mathscr {M}}} \omega _i = 1\).

Let us also define

$$\begin{aligned} P_{guess}^\text {fun} \left( R,\alpha ,\mathbf {p},\mathbf {\eta } \right)\equiv & {} \sum _{i \in {\mathscr {M}}} \omega _i P_{guess}^i(p_i, \eta _i), \end{aligned}$$
(18a)
$$\begin{aligned} p^\text {fun} \left( R,\alpha ,\mathbf {p},\mathbf {\eta } \right)\equiv & {} \sum _{i \in {\mathscr {M}}} \omega _i p_i, \end{aligned}$$
(18b)
$$\begin{aligned} \eta ^\text {fun} \left( R,\alpha ,\mathbf {\eta }\right)\equiv & {} {\bar{\eta }}. \end{aligned}$$
(18c)

Using the above expression, we can give the following upper bounds on the maximal average guessing probability for the blocking parameter R, the observed value p of the certificate (3) and the observed value \(\eta \) of the detection efficiency (2):

$$\begin{aligned} \begin{aligned} P_{guess}(R,\eta ,p) \equiv&\underset{\begin{array}{c} \alpha \in [0,1] \\ \eta _\text {asyn},\eta _\text {sig},\eta _\text {syn} \in [0,1] \\ p_\text {asyn} \in [0,c_Q] \\ p_\text {sig} \in [0,c_R] \\ p_\text {syn} \in [0,c_S(\eta _\text {syn})] \end{array}}{\text {maximize}}&P_{guess}^\text {fun} \left( R,\alpha ,\mathbf {p},\mathbf {\eta } \right) \\&\quad \text {subject to } \quad&p^\text {fun} \left( R,\alpha ,\mathbf {p},\mathbf {\eta } \right) = p, \\&\eta ^\text {fun} \left( R,\alpha ,\mathbf {\eta }\right) = \eta . \end{aligned} \end{aligned}$$
(19)

Note that the constraints can be equivalently rewritten as \(\sum _{i \in {\mathscr {M}}} \eta _i P_{guess}(R,\alpha ) = \eta p\) and \({\bar{\eta }} = \eta \), and these forms are used in “Appendix B”.

Since (19) involves (18a) to perform maximization, we need explicit formulae for \(P_{guess}^i(p_i,\eta _i)\), \(i \in {\mathscr {M}}\). Since “sig” runs are deterministic, we have \(P_{guess}^\text {sig}(p_\text {sig},\eta _\text {sig}) \equiv 1\). \(P_{guess}^\text {asyn}(p_\text {asyn},\eta _\text {asyn})\) is a guessing probability of an eavesdropper not exploiting the detection loophole, thus it doesn’t depend on \(\eta _\text {asyn}\). We provide analysis for this function in this section below. The function \(P_{guess}^\text {syn}(p_\text {syn},\eta _\text {syn})\) has to be developed independently for different formulae for the certificate (3), as this depends on a particular form of detection loophole attack.

Let us now consider a private SDI-QRNG protocol given by some certificate of a form (3) in some fixed dimension. For some \(p \in (c_L, c_Q]\), we have the following formula for \(P_{guess}^\text {asyn}(p,\eta )\):

$$\begin{aligned} \begin{aligned} \underset{ \{ \rho _x \}, \{ M^b_z \}, \{ N^e_{x,z} \}, {\varvec{g}} }{\text {maximize}} \quad&P_{guess}[{\mathbb {P}}_{B|XZE}] \\ \text {subject to } \quad&W[{\mathbb {P}}_{B|XZ}] = p. \end{aligned} \end{aligned}$$
(20)

Without restricting the power of an eavesdropper, we may assume that

$$\begin{aligned} {\mathbb {P}}_{E|XZ}(e|x,z) = {\mathbb {P}}_E(e), \end{aligned}$$
(21)

i.e., the probability of the result e does not depend on x and z. This can be obtained using proper extension of \({\mathscr {H}}_E\), or providing some additional “idle” information to an extended set E.

From (6), it follows that when \(\left\{ \rho _x \right\} \), \(\{M^b_z\}\) and \(\left\{ N^e_{x,z} \right\} \) are fixed, then for an eavesdropper having access to \({\mathscr {H}}_E\) the optimal guessing function \({\varvec{g}}: X \times Z \times E \rightarrow B\) is

$$\begin{aligned} {\varvec{g}}(x,z,e) = \text {argmax}_b {\mathbb {P}}(b|x,z,e), \end{aligned}$$
(22)

i.e., a function returning a most probable result b for each x, z and e.

Using no-signaling \({\mathbb {P}}_{B|XZ}(b|x,z) = \sum _{e \in E} {\mathbb {P}}_{BE|XZ}(b,e|x,z)\) and (21), we get

$$\begin{aligned} {\mathbb {P}}_{B|XZ}(b|x,z) = \sum _e {\mathbb {P}}_{BE|XZ}(b,e|x,z) = \sum _e {\mathbb {P}}_E(e) {\mathbb {P}}_{B|XZE}(b|x,z,e). \end{aligned}$$
(23)

Thus, we can rewrite (20) as

$$\begin{aligned} \begin{aligned} \underset{ \{ \rho _x \}, \{ M^b_z \}, \{ N^e_{x,z} \}, {\varvec{g}} }{\text {maximize}} \quad&\sum _e {\mathbb {P}}_E(e) \sum _{x,z} {\mathbb {P}}_{XZ}(x,z) {\mathbb {P}}_{B|XZE}({\varvec{g}}(x,z,e)|x,z,e)\\ \text {subject to } \quad&\sum _e {\mathbb {P}}_E(e) \sum _{b,x,z} \beta _{b,x,z} {\mathbb {P}}_{B|XZE}(b|x,z,e) = p. \end{aligned} \end{aligned}$$
(24)

Obviously, \(\sum _e {\mathbb {P}}_E(e) = 1\) and the probability distribution is obtained by quantum measurements, see (9b). We can relax the latter constraint and replace \({\mathbb {P}}_E(e)\) with nonnegative coefficients \(c_e\), with \(\sum _e c_e = 1\). Then (20) can be relaxed as

$$\begin{aligned} \begin{aligned} G(p)\equiv & {} \underset{ \{c_e\}, \{p_e\}}{\text {maximize}} \quad&c_e g(p_e, e) \\&\text {subject to } \quad&c_e \ge 0, \sum _e c_e = 1, \\&&p_e \in [c_L, c_Q], \sum _e c_e p_e = p, \end{aligned} \end{aligned}$$
(25)

where cf. (8),

$$\begin{aligned} \begin{aligned} g(p_e, e)\equiv & {} \underset{\begin{array}{c} \{ \rho _{x|e} \}, \{ M^b_{z|e} \}, \\ {\varvec{g}}(\cdot ,\cdot ,e): X \times Z \rightarrow B \end{array}}{\text {maximize}} \quad&\sum _{x,z} {\mathbb {P}}_{XZ}(x,z) {\mathbb {P}}_{B|XZe}({\varvec{g}}(x,z,e)|x,z) \\&\text {subject to } \quad&{\mathbb {P}}_{B|XZe}(b|x,z) \equiv {{\,\mathrm{Tr}\,}}\left[ \rho _{x|e} M^b_{z|e} \right] \\&&\sum _{b,x,z} \beta _{b,x,z} {\mathbb {P}}_{B|XZe}(b|x,z) = p_e. \end{aligned} \end{aligned}$$
(26)

Appendix B: Proof of the blocking protocol theorem

From (19), it follows that to have \(P_{guess}(R,\eta ,p) = 1\) we need

$$\begin{aligned} P_{guess}^\text {asyn}(p_\text {asyn},\eta _\text {asyn}) = 1, \text { or} \end{aligned}$$
(27a)
$$\begin{aligned} \omega _\text {asyn} = 0. \end{aligned}$$
(27b)

For (27a) to hold, we need \(p_\text {asyn} \le c_L\).

Now, assuming \(p_\text {asyn} \le c_L\), and using \(p_\text {sig} \le c_L\), we relax the constraints in the optimization problem (19):

$$\begin{aligned}&c_L \times (\omega _\text {asyn} + \omega _\text {sig}) + P_\text {syn}(R,\alpha ) \ge \eta p, \end{aligned}$$
(28a)
$$\begin{aligned}&\omega _\text {asyn} + \omega _\text {sig} \le \eta . \end{aligned}$$
(28b)

Using (28) and the theorem’s assumption \(p > c_L\), we get

$$\begin{aligned} P_\text {syn}(R,\alpha ) \ge \eta \times (p - c_L) \equiv \epsilon > 0. \end{aligned}$$
(29)

From (17), we know there exists \(R < 1\) such that \(P_\text {syn}(R,\alpha ) < \epsilon \). The contradiction with \(p_\text {asyn} \le c_L\) shows that (27a) cannot be satisfied for all R.

What remains for the proof is to show that also (27b) is not true. To show this considers the following relaxation of constraints in (19):

$$\begin{aligned} c_Q \omega _\text {asyn} + c_R \omega _\text {sig} + F_\text {syn}(R) \ge \eta p, \end{aligned}$$
(30)

and (28b). Substituting the latter into (30), we get

$$\begin{aligned} \omega _\text {asyn} \ge \frac{\eta \times (p - c_R) - F_\text {syn}(R)}{c_Q - c_R}. \end{aligned}$$
(31)

Since, for some blocking rate \(R < 1\), the value of \(F_\text {syn}(R)\) is arbitrary small and \(p - c_R > 0\), we see that also (27b) is not satisfied. Therefore, there exists a blocking rate R such that \(P_{guess}(R,\eta ,p) < 1\).

Appendix C: Randomness of \(2 \rightarrow 1\) quantum random access code

A common example [6, 35, 36] of a certificate (3) is based on the so-called \(2 \rightarrow 1\) quantum random access code [37, 38] in dimension 2:

$$\begin{aligned} W^{2 \rightarrow 1}\left[ {\mathbb {P}}_{B|XZ}\right] \equiv \frac{1}{8} \sum _{x \in X } \sum _{z \in Z } {\mathbb {P}}_{B|XZ}(b=x_z|x,z), \end{aligned}$$
(32)

with \(X = \{00,01,10,11\}\), \(Z = \{0,1\}\), \(B = \{0,1\}\). Results of our experimental implementation of this QRAC are shown in Table 1.

Table 1 Observed experimental probabilities \({\mathbb {P}}(b|x,z)\) with error bars

To calculate the maximal average guessing probability and min-entropy in the proposed protocol, we performed optimization over the set of all probability distributions allowed by quantum mechanics using the see-saw technique [39, 40] of semi-definite programming [41] and computed \(g(p_e, e)\) from (26) with:

$$\begin{aligned} \begin{aligned}&\underset{ \{ \rho _x \}, \{ M^b_z \}, {\varvec{{\tilde{g}}}}:X \times Z \rightarrow B}{\text {maximize}} \quad \frac{1}{8} \sum _{x,z} P({\varvec{{\tilde{g}}}}(x,z) | x, z) \\&\text {subject to } \quad \frac{1}{8} \sum _{x,z} P(x_z | x, z) = p_e, \\&P(b|x,z) = {{\,\mathrm{Tr}\,}}\left( \rho _x M^z_b \right) , \end{aligned} \end{aligned}$$
(33)

where \(\{ \rho _x \} = \{ \rho _{00},\rho _{01},\rho _{10},\rho _{11} \}\) are states, \(\{ M^b_z \} = \{ \{M^0_0,M^0_1\},\{M^1_0,M^1_1\} \}\) are measurements on a Hilbert space of dimension 2, and \({\varvec{{\tilde{g}}}}\) is a possible guessing strategy when x and z are known. We took \({\mathbb {P}}_{XZ}(x,z) = \frac{1}{ \left| X \, \right| \left| Z \, \right| } = \frac{1}{8}\). In this case, \(c_L = \frac{3}{4}\) and \(c_Q = \frac{1}{2}+\frac{\sqrt{2}}{4} \approx 0.8536\). The result of the optimization as a function of \(p_e\) is shown in Fig. 3. From (25), we conclude the following formula for G(p):

$$\begin{aligned} G(p) = \frac{\frac{1}{2} + \frac{\sqrt{2}}{4} - 1}{\frac{1}{2} + \frac{\sqrt{2}}{4} - \frac{3}{4}} \times \left( p - \frac{3}{4}\right) + 1 = -\sqrt{2} \times \left( p - \frac{3}{4}\right) + 1. \end{aligned}$$
(34)
Fig. 3
figure 3

(Color online) Maximal average guessing probability for a certificate (32) based on \(2 \rightarrow 1\) quantum random access code obtained using see-saw technique with the formula (33). The function is not differentiable at points relating to changes of the optimal guessing function \({\varvec{g}}: X \times Z \rightarrow B\), which are \({\varvec{g}}_1(x_0,x_1,z) = x_0\), \({\varvec{g}}_2(x_0,x_1,z) = x_0 \cdot x_1 \vee x_1 \cdot z\) and \({\varvec{g}}_3(x_0,x_1,z) = x_z\) (reading from the left of the plot)

Now, we give the explicit formula for \(P_{guess}^\text {syn}(p_\text {syn},\eta _\text {syn})\) for the considered protocol. M is allowed not to click in \(1-\eta \) part of rounds, and using detection efficiency loophole it can mimic a higher value of the certificate (32). The method is the following.

If \(\eta \le \frac{1}{2}\), then the malevolent vendor can use the following strategy for all inputs. P is encoding one bit from the input, \(x_0\) or \(x_1\) with equal ratio. The choice which bit to encode is guided by shared randomness. If the input z matches the encoded bit, M measures the qubit and satisfies the certificate (32) with probability 1. Otherwise M outputs \(\emptyset \). An upper bound on the maximal average guessing probability is given by:

$$\begin{aligned} \begin{aligned}&P_{guess}^{2 \rightarrow 1}\left( R, \eta , \alpha , p_\text {asyn}, q, \eta _\text {asyn}, \eta _\text {syn}\right) \equiv _{[\eta _\text {syn} \le \frac{1}{2}]} \omega _\text {asyn} G(p_\text {asyn}) + \omega _\text {sig} + \omega _\text {syn} \\&= 1 - \omega _\text {asyn} \sqrt{2} \left( p_\text {asyn} - \frac{3}{4} \right) = 1 - \frac{\sqrt{2} }{\eta } \eta _\text {asyn} P_\text {asyn}(R,\alpha ) \times \left( p_\text {asyn} - \frac{3}{4} \right) . \end{aligned}\nonumber \\ \end{aligned}$$
(35)

If \(\eta > \frac{1}{2}\) then in \(2(1-\eta )\) part of rounds P uses the above encoding strategy and the device attains \(W^{2 \rightarrow 1}\left[ {\mathbb {P}}\right] = 1\). In the remaining \(2\eta -1\) part of rounds, P and M use the states and measurements referring to the value of the certificate (32) equal to some \(q \in [c_L, c_Q]\). The observed average value of the certificate in such a strategy is

$$\begin{aligned} p_\text {syn} = \frac{1}{\eta _\text {syn}} \left[ (2\eta _\text {syn}-1) q + (1-\eta _\text {syn}) \right] = 2 q - 1 + \frac{1-q}{\eta _\text {syn}}. \end{aligned}$$
(36)

The detection loophole allows to achieve the value of (36) up to \(\frac{2\eta + \sqrt{2} - 1}{2 \sqrt{2} \eta } \le 1\) with \(q = c_Q\). Thus,

$$\begin{aligned} c_S(\eta ) = \min \left( \frac{2\eta + \sqrt{2} - 1}{2 \sqrt{2} \eta } , 1 \right) . \end{aligned}$$
(37)

The value of (36) equals \(p_\text {syn} \le c_S({\eta _\text {syn}})\) if and only if \(q = \frac{\eta _\text {syn} (1+p_\text {syn}) - 1}{2\eta _\text {syn} -1}\). The maximal average guessing probability is then upper bounded by

$$\begin{aligned} \begin{aligned} {\tilde{G}}(p_\text {syn},\eta _\text {syn})&\equiv \frac{2\eta _\text {syn} - 1}{\eta _\text {syn}} \times G\left( \frac{\eta _\text {syn} (1+p_\text {syn}) - 1}{2\eta _\text {syn} -1}\right) + \frac{1-\eta _\text {syn}}{\eta _\text {syn}} \\&= -\sqrt{2} p_\text {syn} + 1 + \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{4\eta _\text {syn}}, \end{aligned} \end{aligned}$$
(38)

or, equivalently,

$$\begin{aligned} \begin{aligned} {\bar{G}}(q,\eta _\text {syn})&\equiv \frac{2\eta _\text {syn} - 1}{\eta _\text {syn}} \times G(q) + \frac{1-\eta _\text {syn}}{\eta _\text {syn}} \\&= \frac{1}{\eta _\text {syn}} \times \left[ -\sqrt{2} q \times (2 \eta _\text {syn} - 1) - \frac{3 \sqrt{2}}{4} \right] + \frac{3 \sqrt{2}}{2} + 1, \end{aligned} \end{aligned}$$
(39)

and is lower than 1 if and only if \(p_\text {syn} > \frac{1}{2} + \frac{1}{4 \eta _\text {syn}}\) or, equivalently, \(q > \frac{3}{4}\). Using this, we get that an upper bound on the maximal average guessing probability is in this case given by

$$\begin{aligned} \begin{aligned}&P_{guess}^{2 \rightarrow 1}\left( R, \eta , \alpha , p_\text {asyn}, q, \eta _\text {asyn}, \eta _\text {syn}\right) \equiv _{[\eta _\text {syn} > \frac{1}{2}]} \omega _\text {asyn} G(p_\text {asyn}) + \omega _\text {sig}\\&\qquad + \omega _\text {syn} {\bar{G}}(q,\eta _\text {syn}) \\&\quad = 1 - \sqrt{2} \times \left[ \omega _\text {asyn} \times \left( p_\text {asyn} - \frac{3}{4}\right) + \frac{2 \eta _\text {syn} - 1}{\eta _\text {syn}} \times \omega _\text {syn} \times \left( q - \frac{3}{4} \right) \right] \\&\quad = 1 - \frac{\sqrt{2}}{\eta } \times \left[ \eta _\text {asyn} P_\text {asyn}(R,\alpha ) \left( p_\text {asyn} - \frac{3}{4} \right) + (2 \eta _\text {syn} - 1) P_\text {syn}(R,\alpha ) \left( q - \frac{3}{4} \right) \right] . \end{aligned} \end{aligned}$$
(40)

Let us now give an explicit formula for an upper bound on the maximal average guessing probability, see (19), in this scenario. Let us define, cf. (36),

$$\begin{aligned} (36), p_\text {syn}^\text {fun}(q, \eta _\text {syn}) \equiv {\left\{ \begin{array}{ll} 2 q - 1 + \frac{1-q}{\eta _\text {syn}} &{} \text {for } \eta _\text {syn} > \frac{1}{2}, \\ 1 &{} \text {for } \eta _\text {syn} \le \frac{1}{2}. \end{array}\right. } \end{aligned}$$
(41)

We have

$$\begin{aligned} \begin{aligned} P_{guess}(R,\eta ,p) \le&\underset{\begin{array}{c} \alpha \in [0,1] \\ \eta _\text {asyn},\eta _\text {sig},\eta _\text {syn} \in [0,1] \\ p_\text {asyn},q \in [\frac{3}{4},c_Q] \\ \end{array}}{\text {maximize}} P_{guess}^{2 \rightarrow 1} \left( R, \eta , \alpha , p_\text {asyn}, q, \eta _\text {asyn}, \eta _\text {syn}\right) \\&\quad \text {subject to } \quad q^\text {fun} \left( R,\alpha ,p_\text {asyn},q,\mathbf {\eta } \right) \ge p, \\&\quad \quad \quad \quad \quad \quad \quad \eta ^\text {fun} \left( R,\alpha ,\mathbf {\eta }\right) = \eta , \end{aligned} \end{aligned}$$
(42)

where \(q^\text {fun}\), cf. (18b) is given by

$$\begin{aligned} \begin{aligned} q^\text {fun}&\left( R,\alpha ,p_\text {asyn},q,\mathbf {\eta } \right) \equiv p_\text {asyn} \omega _\text {asyn} + \frac{1}{2} \omega _\text {sig} + p_\text {syn}^\text {fun}(q, \eta _\text {syn}) \omega _\text {syn} \\&= p_\text {asyn} \eta _\text {asyn} \frac{ P_\text {asyn}(R,\alpha )}{\eta } + \frac{1}{2} \eta _\text {sig} \frac{ P_\text {sig}(R,\alpha )}{\eta } + \eta _\text {syn} p_\text {syn}^\text {fun}(q, \eta _\text {syn}) \frac{ P_\text {syn}(R,\alpha )}{\eta } \end{aligned}\nonumber \\ \end{aligned}$$
(43)

Let us denote

$$\begin{aligned} \begin{aligned}&x \equiv \eta \omega _\text {asyn} = \eta _\text {asyn} P_\text {asyn}(R,\alpha ), \\&y \equiv \eta \omega _\text {syn} = \eta _\text {syn} P_\text {syn}(R,\alpha ). \end{aligned} \end{aligned}$$
(44)

Now, use the constraint \(\eta ^\text {fun} \left( R,\alpha ,\mathbf {\eta }\right) = \eta \), or, equivalently, \( \eta _\text {sig} P_\text {sig}(R,\alpha ) = \eta - x - y\), to eliminate \(\eta _\text {sig}\). We separate further analysis in two cases.

In the case with \(\eta _\text {syn} \in [0, \frac{1}{2}]\), we have \(y \le \frac{1}{2 \eta } P_\text {syn}(R,\alpha )\). Let us denote for this case \(z^{-} \equiv x \times \left( p_\text {asyn} - \frac{3}{4}\right) \). Then, (42) transforms to

$$\begin{aligned} P_{guess}^{-}(R,\eta ,p) \le \underset{\begin{array}{c} \alpha \in [0,1] \\ (x,y,z^{-}) \in A^{-}(R,\eta ,p,\alpha ) \end{array}}{\text {maximize}} 1 - \frac{\sqrt{2}}{\eta } z^{-}, \end{aligned}$$
(45)

where \(A^{-}(R,\eta ,p,\alpha ) \subseteq {\mathscr {R}}^3\) is defined by the following linear constraints:

$$\begin{aligned} \begin{aligned}&0 \le x \le P_\text {asyn}(R,\alpha ), \\&0 \le y \le \frac{1}{2} P_\text {syn}(R,\alpha ), \\&0 \le z^{-} \le \left( c_q - \frac{3}{4}\right) \times x, \\&\eta - P_\text {sig}(R,\alpha ) \le x + y \le \eta , \\&\eta \times \left( p - \frac{1}{2}\right) - \frac{1}{4} x - \frac{1}{2} y \le z^{-}. \end{aligned} \end{aligned}$$
(46)

In the case with \(\eta > \frac{1}{2}\), we have \(y \ge \frac{1}{2} P_\text {syn}(R,\alpha )\). Let us now denote

$$\begin{aligned} z^{+} \equiv x \times \left( p_\text {asyn} - \frac{3}{4}\right) + (2 y - P_\text {syn}(R,\alpha )) \times \left( q - \frac{3}{4}\right) . \end{aligned}$$
(47)

As in the previous case, (42) transforms to

$$\begin{aligned} P_{guess}^{+}(R,\eta ,p) \le \underset{\begin{array}{c} \alpha \in [0,1] \\ (x,y,z^{+}) \in A^{+}(R,\eta ,p,\alpha ) \end{array}}{\text {maximize}} 1 - \frac{\sqrt{2}}{\eta } z^{+}, \end{aligned}$$
(48)

where \(A^{+}(R,\eta ,p,\alpha ) \subseteq {\mathscr {R}}^3\) is defined by the following linear constraints:

$$\begin{aligned} \begin{aligned}&0 \le x \le P_\text {asyn}(R,\alpha ), \\&\frac{1}{2} P_\text {syn}(R,\alpha ) \le y \le P_\text {syn}(R,\alpha ), \\&0 \le z^{+} \le \left( c_Q - \frac{3}{4}\right) \times \left[ x + 2 y - P_\text {syn}(R,\alpha )\right] , \\&\eta - P_\text {sig}(R,\alpha ) \le x + y \le \eta , \\&\eta \times \left( p - \frac{1}{2}\right) - \frac{1}{4} x - \frac{1}{4} P_\text {syn}(R,\alpha ) \le z^{+}. \end{aligned} \end{aligned}$$
(49)

It is easy to see that, for fixed \(\alpha \in [0,1]\), the internal optimization in (45) and (48) is a linear program. Thus, we derive the following formula for \(P_{guess}(R,\eta ,p)\) for this scenario:

$$\begin{aligned} P_{guess}(R,\eta ,p) \le \max \left( P_{guess}^{-}(R,\eta ,p), P_{guess}^{+}(R,\eta ,p) \right) , \end{aligned}$$
(50)

with \(P_{guess}^{\pm }(R,\eta ,p) \equiv 0\) if \(A^{\pm } = \emptyset \).

Appendix D: Direct calculations of the experimental randomness

We take the experimental value \(p = 0.8425\) and \(\eta = 0.06\) for \(R = 0.99\), as used in the setup. From our calculations of (45) and (48), it follows that the maximal average guessing probability is obtained for \(\alpha = 0.499\). In that case, \(\eta _\text {asyn} = 0.11880\), \(\eta _\text {sig} = 0\) and \(\eta _\text {syn} = 0.5\). We have \(\omega _\text {asyn} = 0.98951\), \(\omega _\text {sig} = 0\) and \(\omega _\text {syn} = 0.01049\) with \(p_\text {asyn} = 0.84083\) and \(p_\text {syn} = 1\). This gives \(G(0.84083) = 0.87155\). Direct calculation of (35) gives

$$\begin{aligned} 0.98951 \times 0.87155 + 0 + 0.01049 \approx 0.87289, \end{aligned}$$
(51)

and thus \(-\log _2(0.87289) \approx 0.19612\). Since only \((1-R) \times \eta = 0.0006\) emitted photons are detected, the generation ratio of min-entropy is

$$\begin{aligned} H_\infty (0.99,0.06,0.8425) \approx 0.00012. \end{aligned}$$
(52)

Analogous calculations for \(R = 0.3\), \(\eta = 0.78\), and optimal \(\alpha = 0.157\). This gives \(P_\text {asyn}(R,\alpha ) = 0.71827\), \(P_\text {sig}(R,\alpha ) = 0.157\), \(P_\text {syn} = 0.12473\) with \(\eta _\text {asyn} = 0.99912\), \(\eta _\text {sig} = 0\), \(\eta _\text {syn} = 0.5\). Here \(p_\text {asyn} = 0.82881\) and \(p_\text {syn} = 1\), giving \(G(0.82881) = 0.88854\). From this, it follows that \(\omega _\text {asyn} = 0.92004\), \(\omega _\text {sig} = 0\), and \(\omega _\text {syn} = 0.07996\). Direct calculation gives

$$\begin{aligned} 0.92004 \times 0.88854 + 0 + 0.07996 = 0.89745, \end{aligned}$$
(53)

and

$$\begin{aligned} H_\infty (0.3,0.78,0.8425) \approx -0.7 \times 0.78 \times \log _2 (0.89745) \approx 0.08523. \end{aligned}$$
(54)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mironowicz, P., Cañas, G., Cariñe, J. et al. Quantum randomness protected against detection loophole attacks. Quantum Inf Process 20, 39 (2021). https://doi.org/10.1007/s11128-020-02948-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02948-3

Keywords

Navigation