Skip to main content
Log in

An online optimization algorithm for the real-time quantum state tomography

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Considering the presence of measurement noise in the continuous weak measurement process, the optimization problem of online quantum state tomography (QST) with corresponding constraints is formulated. Based on the online alternating direction multiplier method (OADM) and the continuous weak measurement (CWM), an online QST algorithm (QST-OADM) is designed and derived. Specifically, the online QST problem is divided into two subproblems about the quantum state and the measurement noise. The proposed algorithm adopts adaptive learning rate and reduces the computational complexity to \({\mathscr {O}}(d^3)\), which provides a more efficient mechanism for real-time quantum state tomography. Compared with most existing algorithms of online QST based on CWM which require time-consuming iterations in each estimation, the proposed QST-OADM can exactly solve two subproblems at each sampling. The merits of the proposed algorithm are demonstrated in the numerical experiments of online QST for 1-, 2-, 3-, and 4-qubit systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Paris, M., Rehacek, J.: Quantum State Tomography. Springer, New York (2004)

    MATH  Google Scholar 

  2. Kalev, A., Hen, I.: Fidelity-optimized quantum state tomography. New J. Phys. 17, 093008 (2015)

    Article  ADS  Google Scholar 

  3. Gross, D., Liu, Y., Flammia, S.T.: Quantum state tomography via compressed sensing. Phys. Rev. A 105, 150401 (2010)

    Google Scholar 

  4. Zhang, J., Cong, S., Ling, Q., Li, K.: An efficient and fast quantum state estimator with sparse disturbance. IEEE Trans. Cybern. 49, 2546–2555 (2018)

    Article  Google Scholar 

  5. Li, K., Zheng, K., Yang, J., Cong, S., Liu, X., Li, Z.: Hybrid reconstruction of quantum density matrix: when low-rank meets sparsity. Quantum Inf. Process. 16(12), 299 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  6. Shalevshwartz, S.: Online learning and online convex optimization. Found. Trends Mach. Learn. 4, 107–194 (2012)

    Article  Google Scholar 

  7. Hesterberg, T.: Introduction to stochastic search and optimization: estimation, simulation, and control. J. Am. Stat. Assoc. 46, 368–369 (2012)

    Google Scholar 

  8. Li, K., Zhang, H., Kuang, S., Meng, F., Cong, S.: An improved robust ADMM algorithm for quantum state tomography. Quantum Inf. Process. 15(6), 2343–2358 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  9. Leghtas, Z., Mirrahimi, M., Rouchon, P.: Back and forth nudging for quantum state tomography by continuous weak measurement. In: Proceedings of the 2011 American Control Conference, pp. 4334–4339 (2011). https://doi.org/10.1109/ACC.2011.5991108

  10. Wang, L., Zhou, Y.Y., Zhou, X.J., Chen, X., Zhang, Z.: Erratum: Correction to: New scheme for measurement-device-independent quantum key distribution. Quantum Inf. Process. 18, 1 (2019)

    Article  Google Scholar 

  11. Silberfarb, A., Jessen, P.S., Deutsch, I.H.: Quantum state reconstruction via continuous measurement. Phys. Rev. A 95, 030402 (2005)

    MathSciNet  MATH  Google Scholar 

  12. Smith, G.A., Silberfarb, A., Deutsch, I.H., Jessen, P.S.: Efficient quantum-state estimation by continuous weak measurement and dynamical control. Phys. Rev. Lett. 97, 180403 (2006)

    Article  ADS  Google Scholar 

  13. Youssry, A., Ferrie, C., Tomamichel, M.: Efficient online quantum state tomography using a matrix-exponentiated gradient method. New J. Phys. 21, 033006 (2019)

    Article  ADS  Google Scholar 

  14. Ralph, J., Jacobs, K., Hill, C.D.: Frequency tracking and parameter estimation for robust quantum state tomography. Phys. Rev. A 84, 052119 (2011)

    Article  ADS  Google Scholar 

  15. Yang, J., Cong, S., Kuang, S.: Real-time quantum state tomography based on continuous weak measurement and compressed sensing. Proc. Int. MultiConf. Eng. Comput. Sci. 2, 499–504 (2018)

    Google Scholar 

  16. Cong, S., Tang, Y., Sajede, H., Li, K., Yang, J.: On-line quantum state tomography using continuous weak measurement and compressed sensing. Sci. China Inf. Sci. 62, 1–4 (2019)

    ADS  Google Scholar 

  17. Grant, M., Boyd, S., Ye, Y.: CVX: Matlab software for disciplined convex programming. http://stanford.edu/~boyd/cvx (2008)

  18. Harraz, S., Cong, S.: State transfer via on-line state estimation and Lyapunov-based feedback control for a n-qubit system. Entropy 21, 751–762 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  19. Hong, T., Zhu, Z.: Online learning sensing matrix and sparsifying dictionary simultaneously for compressive sensing. Sig. Process. 153, 188–196 (2018)

    Article  Google Scholar 

  20. Wang, H., Banerjee, A.: Online alternating direction method. In: 29th International Conference on Machine Learning, ICML, pp. 1119–1126 (2012)

  21. Zhang, J.: Divergence function, duality, and convex analysis. Neural Comput. 16, 159–195 (2004)

    Article  Google Scholar 

  22. Goh, G., Dey, D.: Bayesian model diagnostics using functional Bregman divergence. J. Multivar. Anal. 124, 371–383 (2014)

    Article  MathSciNet  Google Scholar 

  23. Gonalves, D.S., Gomes-Ruggiero, M.A., Lavor, C.: A projected gradient method for optimization over density matrices. Optim. Methods Softw. 31, 328–341 (2016)

    Article  MathSciNet  Google Scholar 

  24. Zheng, K., Li, K., Cong, S.: A reconstruction algorithm for compressive quantum tomography using various measurement sets. Sci. Rep. 6, 38497 (2016)

    Article  ADS  Google Scholar 

  25. Li, K., Zhang, J., Cong, S.: Fast reconstruction of high-qubit-number quantum states via low-rate measurements. Phys. Rev. A 96, 012334 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  26. Liang, Y.C., Yeh, Y.H., Mendona, P.E., Teh, R.Y., Reid, M.D., Drummond, P.D.: Quantum fidelity measures for mixed states. Rep. Prog. Phys. 82, 076001 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  27. Yamamoto, N., Mikami, T.: Entanglement-assisted quantum feedback control. Quantum Inf. Process. 16, 179 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  28. Gilchrist, A., Langford, N.K., Nielsen, M.A.: Distance measures to compare real and ideal quantum processes. Phys. Rev. A 71, 062310 (2005)

    Article  ADS  Google Scholar 

  29. Ma, Z., Zhang, F., Chen, J.: Geometric interpretation for the A fidelity and its relation with the Bures fidelity. Phys. Rev. A 78, 064305 (2008)

    Article  ADS  Google Scholar 

  30. Wang, X., Yu, C., Yi, X.: An alternative quantum fidelity for mixed states of qudits. Phys. Rev. A 373, 58–60 (2008)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuang Cong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the National Natural Science Foundation of China under Grant Nos. 61720106009 and 61973290.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Cong, S., Li, K. et al. An online optimization algorithm for the real-time quantum state tomography. Quantum Inf Process 19, 361 (2020). https://doi.org/10.1007/s11128-020-02866-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02866-4

Keywords

Navigation