Skip to main content
Log in

Elementary quantum gates between long-distance qubits mediated by a resonator

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose a scheme to realize Controlled-NOT, Controlled-V, Controlled-\(V^{\dag }\) gate based on the indirect coupling of two qubits which are coupled to a common resonator. Based on the state-of-the-art controllability of longitudinal and transverse coupling between a qubit and a resonator, we let the control qubit couple to the resonator longitudinally and the target qubit couple to the resonator transversely. One can get the fidelity of these gates (as well as the synthesized Toffoli gate) over 99% within effective gate timescales. The proposed gate scheme is possible for the experimental setups where the effective qubit–resonator coupling strength is far bigger than the cavity decay rate and the dephasing rate of the qubits and applicable to quantum circuit synthesizing and long-distance qubit interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Benioff, P.: The computer as a physical system: a microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines. J. Stat. Phys. 22(5), 563–591 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  2. Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21(6), 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  3. Deutsch, D.: Quantum theory, the Church–Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A Math. Phys. Sci. 400(1818), 97–117 (1985)

    ADS  MathSciNet  MATH  Google Scholar 

  4. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th Annual Symposium on Foundations of Computer Science. IEEE, pp. 124–134 (1994)

  5. Peng, X., Liao, Z., Xu, N., et al.: Quantum adiabatic algorithm for factorization and its experimental implementation. Phys. Rev. Lett. 101(22), 220405 (2008)

    Article  ADS  Google Scholar 

  6. Boneh, D., Lipton, R.J.: Quantum cryptanalysis of hidden linear functions. In: Annual International Cryptology Conference, pp. 424–437. Springer, Berlin (1995)

  7. Biamonte, J., Wittek, P., Pancotti, N., et al.: Quantum machine learning. Nature 549(7671), 195 (2017)

    Article  ADS  Google Scholar 

  8. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  9. Neill, C., Roushan, P., Kechedzhi, K., et al.: A blueprint for demonstrating quantum supremacy with superconducting qubits. Science 360(6385), 195–199 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  10. Ballance, C.J., Harty, T.P., Linke, N.M., et al.: High-fidelity quantum logic gates using trapped-ion hyperfine qubits. Phys. Rev. Lett. 117(6), 060504 (2016)

    Article  ADS  Google Scholar 

  11. Schäfer, V.M., Ballance, C.J., Thirumalai, K., et al.: Fast quantum logic gates with trapped-ion qubits. Nature 555(7694), 75 (2018)

    Article  ADS  Google Scholar 

  12. Li, X., Wu, Y., Steel, D., et al.: An all-optical quantum gate in a semiconductor quantum dot. Science 301(5634), 809–811 (2003)

    Article  ADS  Google Scholar 

  13. Nichol, J.M., Orona, L.A., Harvey, S.P., et al.: High-fidelity entangling gate for double-quantum-dot spin qubits. npj Quantum Inf. 3(1), 3 (2017)

    Article  ADS  Google Scholar 

  14. Petrosyan, D., Motzoi, F., Saffman, M., et al.: High-fidelity Rydberg quantum gate via a two-atom dark state. Phys. Rev. A 96(4), 042306 (2017)

    Article  ADS  Google Scholar 

  15. Tiarks, D., Schmidt-Eberle, S., Stolz, T., et al.: A photon-photon quantum gate based on Rydberg interactions. Nat. Phys. 15(2), 124 (2019)

    Article  Google Scholar 

  16. Burkard, G., Shkolnikov, V.O., Awschalom, D.D.: Designing a cavity-mediated quantum CPHASE gate between NV spin qubits in diamond. Phys. Rev. B 95(20), 205420 (2017)

    Article  ADS  Google Scholar 

  17. Duan, L.M., Kimble, H.J.: Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92(12), 127902 (2004)

    Article  ADS  Google Scholar 

  18. Hacker, B., Welte, S., Rempe, G., et al.: A photon–photon quantum gate based on a single atom in an optical resonator. Nature 536(7615), 193 (2016)

    Article  ADS  Google Scholar 

  19. Borregaard, J., Komar, P., Kessler, E.M., et al.: Heralded quantum gates with integrated error detection in optical cavities. Phys. Rev. Lett. 114(11), 110502 (2015)

    Article  ADS  Google Scholar 

  20. Borges, H.S., Rossatto, D.Z., Luiz, F.S., et al.: Heralded entangling quantum gate via cavity-assisted photon scattering. Phys. Rev. A 97(1), 013828 (2018)

    Article  ADS  Google Scholar 

  21. Lahad, O., Firstenberg, O.: Induced cavities for photonic quantum gates. Phys. Rev. Lett. 119(11), 113601 (2017)

    Article  ADS  Google Scholar 

  22. Alqahtani, M.M.: Multiphoton process in cavity QED photons for implementing a three-qubit quantum gate operation. Quantum Inf. Process. 19(1), 12 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  23. Brecht, T., Pfaff, W., Wang, C., et al.: Multilayer microwave integrated quantum circuits for scalable quantum computing. Npj Quantum Inf. 2, 16002 (2016)

    Article  ADS  Google Scholar 

  24. Welte, S., Hacker, B., Daiss, S., et al.: Photon-mediated quantum gate between two neutral atoms in an optical cavity. Phys. Rev. X 8(1), 011018 (2018)

    Google Scholar 

  25. Lekitsch, B., Weidt, S., Fowler, A.G., et al.: Blueprint for a microwave trapped ion quantum computer. Sci. Adv. 3(2), e1601540 (2017)

    Article  ADS  Google Scholar 

  26. Chou, K.S., Blumoff, J.Z., Wang, C.S., et al.: Deterministic teleportation of a quantum gate between two logical qubits. Nature 561(7723), 368 (2018)

    Article  ADS  Google Scholar 

  27. Wan, Y., Kienzler, D., Erickson, S.D., et al.: Quantum gate teleportation between separated qubits in a trapped-ion processor. Science 364(6443), 875–878 (2019)

    Article  ADS  Google Scholar 

  28. Beaudoin, F., Lachance-Quirion, D., Coish, W.A., et al.: Coupling a single electron spin to a microwave resonator: controlling transverse and longitudinal couplings. Nanotechnology 27(46), 464003 (2016)

    Article  Google Scholar 

  29. Richer, S., Maleeva, N., Skacel, S.T., et al.: Inductively shunted transmon qubit with tunable transverse and longitudinal coupling. Phys. Rev. B 96(17), 174520 (2017)

    Article  ADS  Google Scholar 

  30. Lambert, N., Cirio, M., Delbecq, M., et al.: Amplified and tunable transverse and longitudinal spin-photon coupling in hybrid circuit-QED. Phys. Rev. B 97(12), 125429 (2018)

    Article  ADS  Google Scholar 

  31. Schuetz, M.J.A., Giedke, G., Vandersypen, L.M.K., et al.: High-fidelity hot gates for generic spin-resonator systems. Phys. Rev. A 95(5), 052335 (2017)

    Article  ADS  Google Scholar 

  32. Warren, A., Barnes, E., Economou, S.E.: Long-distance entangling gates between quantum dot spins mediated by a superconducting resonator. Phys. Rev. B 100(16), 161303 (2019)

    Article  ADS  Google Scholar 

  33. Chen, X.Y., Yin, Z.: Universal quantum gates between nitrogen-vacancy centers in a levitated nanodiamond. Phys. Rev. A 99(2), 022319 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  34. Maslov, D., Miller, D.M.: Comparison of the cost metrics through investigation of the relation between optimal NCV and optimal NCT three-qubit reversible circuits. IET Comput. Digit. Tech. 1(2), 98–104 (2007)

    Article  Google Scholar 

  35. Maslov, D., Young, C., Miller, D.M., et al.: Quantum circuit simplification using templates. In: Proceedings of the Conference on Design, Automation and Test in Europe, Vol. 2, pp. 1208–1213. IEEE Computer Society (2005)

  36. Tan, Y., Cheng, X., Guan, Z., et al.: Multi-strategy based quantum cost reduction of linear nearest-neighbor quantum circuit. Quantum Inf. Process. 17(3), 61 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  37. Miller, D.M., Wille, R., Sasanian, Z.: Elementary quantum gate realizations for multiple-control Toffoli gates. In: 2011 41st IEEE International Symposium on Multiple-Valued Logic, pp. 288–293. IEEE (2011)

  38. Frey, T., Leek, P.J., Beck, M., et al.: Dipole coupling of a double quantum dot to a microwave resonator. Phys. Rev. Lett. 108(4), 046807 (2012)

    Article  ADS  Google Scholar 

  39. Gullans, M.J., Liu, Y.Y., Stehlik, J., et al.: Phonon-assisted gain in a semiconductor double quantum dot maser. Phys. Rev. Lett. 114(19), 196802 (2015)

    Article  ADS  Google Scholar 

  40. Childress, L., Sørensen, A.S., Lukin, M.D.: Mesoscopic cavity quantum electrodynamics with quantum dots. Phys. Rev. A 69(4), 042302 (2004)

    Article  ADS  Google Scholar 

  41. Wang, X., Miranowicz, A., Li, H.R., et al.: Multiple-output microwave single-photon source using superconducting circuits with longitudinal and transverse couplings. Phys. Rev. A 94(5), 053858 (2016)

    Article  ADS  Google Scholar 

  42. Wang, R., Deacon, R.S., Sun, J., et al.: Gate tunable hole charge qubit formed in a Ge/Si nanowire double quantum dot coupled to microwave photons. Nano Lett. 19, 1052–1060 (2019)

    Article  ADS  Google Scholar 

  43. Xu, G., Li, Y., Gao F., et al.: Dipole coupling of a tunable hole double quantum dot in germanium hut wire to a microwave resonator. arXiv:1905.01586 (2019)

  44. Ibberson, D.J., Lundberg, T., Haigh, J.A., et al.: Large dispersive interaction between a CMOS double quantum dot and microwave photons. arXiv:2004.00334 (2020)

Download references

Acknowledgements

This work is supported by the project of National Natural Science Foundation of China (Grant No. 11775190) and Zhejiang Provincial Natural Science Foundation of China (Grant No. LZ20A040002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ai-Xi Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, MC., Chen, AX. Elementary quantum gates between long-distance qubits mediated by a resonator. Quantum Inf Process 19, 365 (2020). https://doi.org/10.1007/s11128-020-02858-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02858-4

Keywords

Navigation