Meyer, D.A.: From quantum cellular automata to quantum lattice gases. J. Stat. Phys. 85(5–6), 551–574 (1996)
ADS
MathSciNet
Article
Google Scholar
Meyer, D.A.: On the absence of homogeneous scalar unitary cellular automata. Phys. Lett. A 223(5), 337–340 (1996)
ADS
MathSciNet
Article
Google Scholar
Aharonov, D., Ambainis, A., Kempe, J., Vazirani, U.: Quantum walks on graphs. In: Proceedings of the Thirty-third Annual ACM Symposium on Theory of Computing, STOC ’01, pp. 50–59. ACM, New York, NY, USA (2001)
Ambainis, A., Bach, E., Nayak, A., Vishwanath, A., Watrous, J.: One-dimensional quantum walks. In: Proceedings of the 33rd Annual ACM Symposium on Theory of Computing, STOC ’01, pp. 37–49. ACM, New York, NY, USA (2001)
Shenvi, N., Kempe, J., Whaley, K.B.: Quantum random-walk search algorithm. Phys. Rev. A 67, 052307 (2003)
ADS
Article
Google Scholar
Ambainis, A.: Quantum walk algorithm for element distinctness. In: Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science, FOCS ’04, pp. 22–31. IEEE Computer Society (2004)
Magniez, F., Santha, M., Szegedy, M.: Quantum algorithms for the triangle problem. In: Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’05, pp. 1109–1117. SIAM, Philadelphia, PA, USA (2005)
Farhi, E., Goldstone, J., Gutmann, S.: A quantum algorithm for the Hamiltonian NAND tree. Theory Comput. 4(8), 169–190 (2008)
MathSciNet
Article
Google Scholar
Ambainis, A., Kempe, J., Rivosh, A.: Coins make quantum walks faster. In: Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’05, pp. 1099–1108. SIAM, Philadelphia, PA, USA (2005)
Reitzner, D., Hillery, M., Feldman, E., Bužek, V.: Quantum searches on highly symmetric graphs. Phys. Rev. A 79, 012323 (2009)
ADS
Article
Google Scholar
Rhodes, M.L., Wong, T.G.: Quantum walk search on the complete bipartite graph. Phys. Rev. A 99, 032301 (2019)
ADS
Article
Google Scholar
Xue, X.L., Liu, Z.H., Chen, H.W.: Search algorithm on strongly regular graphs based on scattering quantum walk. Chin. Phys. B 26(1), 010301 (2017)
ADS
Article
Google Scholar
Xue, Xl, Ruan, Y., Liu, Zh: Discrete-time quantum walk search on Johnson graphs. Quantum Inf. Process. 18(2), 50 (2019)
ADS
MathSciNet
Article
Google Scholar
Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium on Theory of Computing, STOC ’96, pp. 212–219. ACM, New York, NY, USA (1996)
Wong, T.G.: Grover search with lackadaisical quantum walks. J. Phys. A: Math. Theor. 48(43), 435304 (2015)
MathSciNet
Article
Google Scholar
Wong, T.G.: Coined quantum walks on weighted graphs. J. Phys. A: Math. Theor. 50(47), 475301 (2017)
ADS
MathSciNet
Article
Google Scholar
Inui, N., Konno, N., Segawa, E.: One-dimensional three-state quantum walk. Phys. Rev. E 72, 056112 (2005)
ADS
Article
Google Scholar
Szegedy, M.: Quantum speed-up of Markov chain based algorithms. In: Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science, FOCS ’04, pp. 32–41. IEEE Computer Society, Washington, DC, USA (2004)
Wong, T.G.: Faster search by lackadaisical quantum walk. Quantum Inf. Process. 17(3), 68 (2018)
ADS
MathSciNet
Article
Google Scholar
Saha, A., Majumdar, R., Saha, D., Chakrabarti, A., Sur-Kolay, S.: Search of clustered marked states with lackadaisical quantum walks. arXiv:1804.01446 [quant-ph] (2018)
Nahimovs, N.: Lackadaisical quantum walks with multiple marked vertices. In: Proceedings of the 45th International Conference on Current Trends in Theory and Practice of Computer Science, SOFSEM 2019, pp. 368–378. Nový Smokovec, Slovakia (2019)
Giri, P.R., Korepin, V.: Lackadaisical quantum walk for spatial search. Modern Phys. Lett. A 35, 2050043 (2020)
ADS
MathSciNet
Article
Google Scholar
Rhodes, M.L., Wong, T.G.: Search by lackadaisical quantum walks with nonhomogeneous weights. Phys. Rev. A 100, 042303 (2019)
ADS
Article
Google Scholar
Wong, T.G., Santos, R.A.M.: Exceptional quantum walk search on the cycle. Quantum Inf. Process. 16(6), 154 (2017)
ADS
MathSciNet
Article
Google Scholar
Wang, H., Zhou, J., Wu, J., Yi, X.: Adjustable self-loop on discrete-time quantum walk and its application in spatial search (2017). arXiv:1707.00601 [quant-ph]
Godsil, C., Royle, G.: Algebraic Graph Theory. Volume 207 of Graduate Texts in Mathematics. Springer, Berlin (2001)
Book
Google Scholar
Cameron, P., van Lint, J.: Designs, Graphs. Codes and Their Links. London Mathematical Society Student Texts. Cambridge University Press, Cambridge (1991)
Book
Google Scholar
Buhrman, H., Špalek, R.: Quantum verification of matrix products. In: Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm, SODA ’06, p. 880-889. Society for Industrial and Applied Mathematics, USA (2006)
Janmark, J., Meyer, D.A., Wong, T.G.: Global symmetry is unnecessary for fast quantum search. Phys. Rev. Lett. 112, 210502 (2014)
ADS
Article
Google Scholar
Prūsis, K., Vihrovs, J., Wong, T.G.: Doubling the success of quantum walk search using internal-state measurements. J. Phys. A: Math. Theor. 49(45), 455301 (2016)
ADS
MathSciNet
Article
Google Scholar
Wong, T.G.: Quantum walk search on Johnson graphs. J. Phys. A: Math. Theor. 49(19), 195303 (2016)
ADS
MathSciNet
Article
Google Scholar
Wong, T.G.: Diagrammatic approach to quantum search. Quantum Inf. Process. 14(6), 1767–1775 (2015)
ADS
MathSciNet
Article
Google Scholar
Høyer, P., Yu, Z.: Analysis of lackadaisical quantum walks (2020). arXiv:2002.11234 [quant-ph]