Skip to main content

Perfect quantum state transfer on diamond fractal graphs

Abstract

In the quest for designing novel protocols for quantum information and quantum computation, an important goal is to achieve perfect quantum state transfer for systems beyond the well-known one- dimensional cases, such as 1D spin chains. We use methods from fractal analysis and probability to find a new class of quantum spin chains on fractal-like graphs (known as diamond fractals) which support perfect quantum state transfer and which have a wide range of different Hausdorff and spectral dimensions. The resulting systems are spin networks combining Dyson hierarchical model structure with transverse permutation symmetries of varying order.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Bose, S.: Quantum communication through an unmodulated spin chain. Phys. Rev. Lett. 91(20), 207901 (2003)

    Article  ADS  Google Scholar 

  2. Bose, S.: Quantum communication through spin chain dynamics: an introductory overview. Contemp. Phys. 48, 13–30 (2007)

    ADS  Google Scholar 

  3. Kay, A.: A review of perfect state transfer and its applications as a constructive tool. Int. J. Quantum Inform. 641(8). Preprint quant-ph/0903.4274 (2010)

  4. Christandl, M., Vinet, L., Zhedanov, A.: Analytic next-to-nearest-neighbor x x models with perfect state transfer and fractional revival. Phys. Rev. A 96(3), 032335 (2017)

    ADS  Google Scholar 

  5. Kempton, M., Lippner, G., Yau, S.-T.: Perfect state transfer on graphs with a potential. Quantum Inf. Comput. 17(3–4), 303–327 (2017)

    MathSciNet  MATH  Google Scholar 

  6. Christandl, M., Datta, N., Ekert, A., Landahl, A.J.: Perfect state transfer in quantum spin networks. Phys. Rev. Lett. 92(18), 187902 (2004)

    ADS  Google Scholar 

  7. Burgarth, D., Bose, S.: Conclusive and arbitrarily perfect quantum-state transfer using parallel spin-chain channels. Phys. Rev. A 71(5), 052315 (2005)

    ADS  Google Scholar 

  8. Burgarth, D., Bose, S.: Perfect quantum state transfer with randomly coupled quantum chains. New J. Phys. 7(1), 135 (2005)

    ADS  Google Scholar 

  9. Karbach, P., Stolze, J.: Spin chains as perfect quantum state mirrors. Phys. Rev. A 72(3), 030301 (2005)

    ADS  MathSciNet  Google Scholar 

  10. Angeles-Canul, R.J., Norton, R.M., Opperman, M.C., Paribello, C.C., Russell, M.C., Tamon, C.: Perfect state transfer, integral circulants, and join of graphs. Quantum Inf. Comput. 10(3–4), 325–342 (2010)

    MathSciNet  MATH  Google Scholar 

  11. Bachman, R., Fredette, E., Fuller, J., Landry, M., Opperman, M., Tamon, C., Tollefson, A.: Perfect state transfer on quotient graphs. Quantum Inf. Comput. 12(3–4), 293–313 (2012)

    MathSciNet  MATH  Google Scholar 

  12. Godsil, C.: When can perfect state transfer occur? Electron. J. Linear Algebra 23, 877–890 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bernasconi, A., Godsil, C., Severini, S.: Quantum networks on cubelike graphs. Phys. Rev. A (3) 78(5), 052320 (2008)

    ADS  MathSciNet  Google Scholar 

  14. Godsil, C.: State transfer on graphs. Discrete Math. 312(1), 129–147 (2012)

    MathSciNet  MATH  Google Scholar 

  15. Vinet, L., Zhedanov, A.: Para-Krawtchouk polynomials on a bi-lattice and a quantum spin chain with perfect state transfer. J. Phys. A 45(26), 265304 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  16. Qin, W., Wang, C., Long, G.L.: High-dimensional quantum state transfer through a quantum spin chain. Phys. Rev. A 87(1), 012339 (2013)

    ADS  Google Scholar 

  17. Kempton, M., Lippner, G., Yau, S.-T.: Pretty good quantum state transfer in symmetric spin networks via magnetic field. Quantum Inf. Process. 16(9), 210 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  18. Kirkland, S., McLaren, D., Pereira, R., Plosker, S., Zhang, X.: Perfect quantum state transfer in weighted paths with potentials (loops) using orthogonal polynomials. Linear Multilinear Algebra 67(5), 1043–1061 (2019)

    MathSciNet  MATH  Google Scholar 

  19. Vinet, L., Zhedanov, A.: How to construct spin chains with perfect state transfer. Phys. Rev. A 85(1), 012323 (2012)

    ADS  Google Scholar 

  20. Berker, A.N., Ostlund, S.: Renormalisation-group calculations of finite systems: order parameter and specific heat for epitaxial ordering. J. Phys. C Solid State Phys. 12(22), 4961 (1979)

    ADS  Google Scholar 

  21. Griffiths, R.B., Kaufman, M.: Spin systems on hierarchical lattices. Introduction and thermodynamic limit. Phys. Rev. B 26(9), 5022 (1982)

    ADS  MathSciNet  Google Scholar 

  22. Kaufman, M., Griffiths, R.B.: Spin systems on hierarchical lattices. II. Some examples of soluble models. Phys. Rev. B 30(1), 244 (1984)

    ADS  MathSciNet  Google Scholar 

  23. Malozemov, L., Teplyaev, A.: Pure point spectrum of the Laplacians on fractal graphs. J. Funct. Anal. 129(2), 390–405 (1995)

    MathSciNet  MATH  Google Scholar 

  24. Akkermans, E., Dunne, G., Teplyaev, A.: Physical consequences of complex dimensions of fractals. EPL 88(4), 40007 (2009)

    ADS  Google Scholar 

  25. Hambly, B.M., Kumagai, T.: Diffusion on the scaling limit of the critical percolation cluster in the diamond hierarchical lattice. Commun. Math. Phys. 295(1), 29–69 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  26. Barlow, M.T., Evans, S.N.: Markov processes on vermiculated spaces. In: Kaimanovich, V.A. (ed.) Random walks and geometry. Proceedings of the workshop held in Vienna, June 18–July 13, 2001. In collaboration with Klaus Schmidt and Wolfgang Woess. Walter de Gruyter GmbH & Co. KG, Berlin. ISBN: 3-11-017237-2 (2004)

  27. Nekrashevych, V., Teplyaev, A.: Groups and analysis on fractals. In: Analysis on Graphs and Its Applications, Volume 77 of Proceedings of the Symposium Pure Mathematical. American Mathematical Society, Providence, pp. 143–180 (2008)

  28. Patricia Alonso Ruiz: Explicit formulas for heat kernels on diamond fractals. Commun. Math. Phys. 364(3), 1305–1326 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  29. Alonso Ruiz, P.: Heat kernel analysis on diamond fractals. arXiv:1906.06215 (2019)

  30. Teplyaev, A.: Harmonic coordinates on fractals with finitely ramified cell structure. Can. J. Math. 60(2), 457–480 (2008)

    MathSciNet  MATH  Google Scholar 

  31. Malozemov, L., Teplyaev, A.: Self-similarity, operators and dynamics. Math. Phys. Anal. Geom. 6(3), 201–218 (2003)

    MathSciNet  MATH  Google Scholar 

  32. Brzoska, A., Coffey, A., Hansalik, M., Loew, S., Rogers, L.G.: Spectra of magnetic operators on the diamond lattice fractal. arXiv:1704.01609 (2017)

  33. Alonso-Ruiz, P., Hinz, M., Teplyaev, A., Treviño, R.: Canonical diffusions on the pattern spaces of aperiodic delone sets. arXiv:1801.08956 (2018)

  34. Steinhurst, B., Teplyaev, A.: Spectral analysis and Dirichlet forms on Barlow-Evans fractals. J. Spectr. Theory, to appear (2020). arXiv:1204.5207

  35. Bajorin, N., Chen, T., Dagan, A., Emmons, C., Hussein, M., Khalil, M., Mody, P., Steinhurst, B., Teplyaev, A.: Vibration modes of \(3n\)-gaskets and other fractals. J. Phys. A 41(1), 015101 (2008)

    MathSciNet  MATH  Google Scholar 

  36. Bajorin, N., Chen, T., Dagan, A., Emmons, C., Hussein, M., Khalil, M., Mody, P., Steinhurst, B., Teplyaev, A.: Vibration spectra of finitely ramified, symmetric fractals. Fractals 16(3), 243–258 (2008)

    MathSciNet  MATH  Google Scholar 

  37. Akkermans, E., Dunne, G.V., Teplyaev, A.: Thermodynamics of photons on fractals. Phys. Rev. Lett. 105(23), 230407 (2010)

    ADS  Google Scholar 

  38. Akkermans, E., Benichou, O., Dunne, G.V., Teplyaev, A., Voituriez, R.: Spatial log-periodic oscillations of first-passage observables in fractals. Phys. Rev. E 86(6), 061125 (2012)

    ADS  Google Scholar 

  39. Akkermans, E., Chen, J.P., Dunne, G., Rogers, L.G., Teplyaev, A.: Fractal AC circuits and propagating waves on fractals. In: 6th Cornell Fractals Conference Proceedings, Analysis, Probability and Mathematical Physics on Fractals, Chapter 18, pp. 557–567 (2020). arXiv:1507.05682

  40. Akkermans, E.: Statistical mechanics and quantum fields on fractals. In: Carfì, D., Lapidus, M.L., Pearse, E.P.J., van Frankenhuijsen, M. (eds.) Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics. II. Fractals in Applied Mathematics, Contemporary Mathematics, vol. 601. American Mathematical Society, Providence, RI. ISBN: 978-0-8218-9148-3 (2013)

  41. Dunne, G.V.: Heat kernels and zeta functions on fractals. J. Phys. A 45(37), 374016 (2012)

    MathSciNet  MATH  Google Scholar 

  42. Alonso-Ruiz, P., Kelleher, D.J., Teplyaev, A.: Energy and Laplacian on Hanoi-type fractal quantum graphs. J. Phys. A 49(16), 165206 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  43. Hinz, M., Meinert, M.: On the viscous Burgers equation on metric graphs and fractals. J. Fractal Geom. 7(2), 137–182 (2020)

    MathSciNet  MATH  Google Scholar 

  44. Mograby, G., Derevyagin, M., Dunne, G.V., Teplyaev, A.: Spectra of perfect state transfer Hamiltonians on fractal-like graphs. arXiv:2003.11190 (2020)

  45. Mograby, G., Derevyagin, M., Dunne, G.V., Teplyaev, A.: Hamiltonian systems, Toda lattices, solitons, Lax pairs on weighted Z-graded graphs. arXiv:2008.04897 (2020)

  46. Krön, B., Teufl, E.: Asymptotics of the transition probabilities of the simple random walk on self-similar graphs. Trans. Am. Math. Soc. 356(1), 393–414 (2004)

    MathSciNet  MATH  Google Scholar 

  47. Lang, U., Plaut, C.: Bilipschitz embeddings of metric spaces into space forms. Geom. Dedicata 87(1–3), 285–307 (2001)

    MathSciNet  MATH  Google Scholar 

  48. Szegő, G.: Orthogonal Polynomials. Colloquium Publications, vol. XXIII, 4th edn. American Mathematical Society, Providence (1975)

    Google Scholar 

Download references

Acknowledgements

This research was supported in part by the University of Connecticut Research Excellence Program, by DOE Grant DE-SC0010339 and by NSF DMS Grants 1613025 and 2008844. The authors are grateful to Eric Akkermans, Patricia Alonso-Ruiz, and Gabor Lippner for interesting and helpful discussions. The authors are grateful to anonymous referees for suggested improvements to the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Teplyaev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Derevyagin, M., Dunne, G.V., Mograby, G. et al. Perfect quantum state transfer on diamond fractal graphs. Quantum Inf Process 19, 328 (2020). https://doi.org/10.1007/s11128-020-02828-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02828-w

Keywords

  • Quantum state transfer
  • Quantum computer
  • Spin chain
  • Hierarchical graphs
  • Diamond fractal
  • Hamiltonians with engineered couplings
  • Quantum channels