Abstract
In the quest for designing novel protocols for quantum information and quantum computation, an important goal is to achieve perfect quantum state transfer for systems beyond the well-known one- dimensional cases, such as 1D spin chains. We use methods from fractal analysis and probability to find a new class of quantum spin chains on fractal-like graphs (known as diamond fractals) which support perfect quantum state transfer and which have a wide range of different Hausdorff and spectral dimensions. The resulting systems are spin networks combining Dyson hierarchical model structure with transverse permutation symmetries of varying order.
This is a preview of subscription content, access via your institution.




References
Bose, S.: Quantum communication through an unmodulated spin chain. Phys. Rev. Lett. 91(20), 207901 (2003)
Bose, S.: Quantum communication through spin chain dynamics: an introductory overview. Contemp. Phys. 48, 13–30 (2007)
Kay, A.: A review of perfect state transfer and its applications as a constructive tool. Int. J. Quantum Inform. 641(8). Preprint quant-ph/0903.4274 (2010)
Christandl, M., Vinet, L., Zhedanov, A.: Analytic next-to-nearest-neighbor x x models with perfect state transfer and fractional revival. Phys. Rev. A 96(3), 032335 (2017)
Kempton, M., Lippner, G., Yau, S.-T.: Perfect state transfer on graphs with a potential. Quantum Inf. Comput. 17(3–4), 303–327 (2017)
Christandl, M., Datta, N., Ekert, A., Landahl, A.J.: Perfect state transfer in quantum spin networks. Phys. Rev. Lett. 92(18), 187902 (2004)
Burgarth, D., Bose, S.: Conclusive and arbitrarily perfect quantum-state transfer using parallel spin-chain channels. Phys. Rev. A 71(5), 052315 (2005)
Burgarth, D., Bose, S.: Perfect quantum state transfer with randomly coupled quantum chains. New J. Phys. 7(1), 135 (2005)
Karbach, P., Stolze, J.: Spin chains as perfect quantum state mirrors. Phys. Rev. A 72(3), 030301 (2005)
Angeles-Canul, R.J., Norton, R.M., Opperman, M.C., Paribello, C.C., Russell, M.C., Tamon, C.: Perfect state transfer, integral circulants, and join of graphs. Quantum Inf. Comput. 10(3–4), 325–342 (2010)
Bachman, R., Fredette, E., Fuller, J., Landry, M., Opperman, M., Tamon, C., Tollefson, A.: Perfect state transfer on quotient graphs. Quantum Inf. Comput. 12(3–4), 293–313 (2012)
Godsil, C.: When can perfect state transfer occur? Electron. J. Linear Algebra 23, 877–890 (2012)
Bernasconi, A., Godsil, C., Severini, S.: Quantum networks on cubelike graphs. Phys. Rev. A (3) 78(5), 052320 (2008)
Godsil, C.: State transfer on graphs. Discrete Math. 312(1), 129–147 (2012)
Vinet, L., Zhedanov, A.: Para-Krawtchouk polynomials on a bi-lattice and a quantum spin chain with perfect state transfer. J. Phys. A 45(26), 265304 (2012)
Qin, W., Wang, C., Long, G.L.: High-dimensional quantum state transfer through a quantum spin chain. Phys. Rev. A 87(1), 012339 (2013)
Kempton, M., Lippner, G., Yau, S.-T.: Pretty good quantum state transfer in symmetric spin networks via magnetic field. Quantum Inf. Process. 16(9), 210 (2017)
Kirkland, S., McLaren, D., Pereira, R., Plosker, S., Zhang, X.: Perfect quantum state transfer in weighted paths with potentials (loops) using orthogonal polynomials. Linear Multilinear Algebra 67(5), 1043–1061 (2019)
Vinet, L., Zhedanov, A.: How to construct spin chains with perfect state transfer. Phys. Rev. A 85(1), 012323 (2012)
Berker, A.N., Ostlund, S.: Renormalisation-group calculations of finite systems: order parameter and specific heat for epitaxial ordering. J. Phys. C Solid State Phys. 12(22), 4961 (1979)
Griffiths, R.B., Kaufman, M.: Spin systems on hierarchical lattices. Introduction and thermodynamic limit. Phys. Rev. B 26(9), 5022 (1982)
Kaufman, M., Griffiths, R.B.: Spin systems on hierarchical lattices. II. Some examples of soluble models. Phys. Rev. B 30(1), 244 (1984)
Malozemov, L., Teplyaev, A.: Pure point spectrum of the Laplacians on fractal graphs. J. Funct. Anal. 129(2), 390–405 (1995)
Akkermans, E., Dunne, G., Teplyaev, A.: Physical consequences of complex dimensions of fractals. EPL 88(4), 40007 (2009)
Hambly, B.M., Kumagai, T.: Diffusion on the scaling limit of the critical percolation cluster in the diamond hierarchical lattice. Commun. Math. Phys. 295(1), 29–69 (2010)
Barlow, M.T., Evans, S.N.: Markov processes on vermiculated spaces. In: Kaimanovich, V.A. (ed.) Random walks and geometry. Proceedings of the workshop held in Vienna, June 18–July 13, 2001. In collaboration with Klaus Schmidt and Wolfgang Woess. Walter de Gruyter GmbH & Co. KG, Berlin. ISBN: 3-11-017237-2 (2004)
Nekrashevych, V., Teplyaev, A.: Groups and analysis on fractals. In: Analysis on Graphs and Its Applications, Volume 77 of Proceedings of the Symposium Pure Mathematical. American Mathematical Society, Providence, pp. 143–180 (2008)
Patricia Alonso Ruiz: Explicit formulas for heat kernels on diamond fractals. Commun. Math. Phys. 364(3), 1305–1326 (2018)
Alonso Ruiz, P.: Heat kernel analysis on diamond fractals. arXiv:1906.06215 (2019)
Teplyaev, A.: Harmonic coordinates on fractals with finitely ramified cell structure. Can. J. Math. 60(2), 457–480 (2008)
Malozemov, L., Teplyaev, A.: Self-similarity, operators and dynamics. Math. Phys. Anal. Geom. 6(3), 201–218 (2003)
Brzoska, A., Coffey, A., Hansalik, M., Loew, S., Rogers, L.G.: Spectra of magnetic operators on the diamond lattice fractal. arXiv:1704.01609 (2017)
Alonso-Ruiz, P., Hinz, M., Teplyaev, A., Treviño, R.: Canonical diffusions on the pattern spaces of aperiodic delone sets. arXiv:1801.08956 (2018)
Steinhurst, B., Teplyaev, A.: Spectral analysis and Dirichlet forms on Barlow-Evans fractals. J. Spectr. Theory, to appear (2020). arXiv:1204.5207
Bajorin, N., Chen, T., Dagan, A., Emmons, C., Hussein, M., Khalil, M., Mody, P., Steinhurst, B., Teplyaev, A.: Vibration modes of \(3n\)-gaskets and other fractals. J. Phys. A 41(1), 015101 (2008)
Bajorin, N., Chen, T., Dagan, A., Emmons, C., Hussein, M., Khalil, M., Mody, P., Steinhurst, B., Teplyaev, A.: Vibration spectra of finitely ramified, symmetric fractals. Fractals 16(3), 243–258 (2008)
Akkermans, E., Dunne, G.V., Teplyaev, A.: Thermodynamics of photons on fractals. Phys. Rev. Lett. 105(23), 230407 (2010)
Akkermans, E., Benichou, O., Dunne, G.V., Teplyaev, A., Voituriez, R.: Spatial log-periodic oscillations of first-passage observables in fractals. Phys. Rev. E 86(6), 061125 (2012)
Akkermans, E., Chen, J.P., Dunne, G., Rogers, L.G., Teplyaev, A.: Fractal AC circuits and propagating waves on fractals. In: 6th Cornell Fractals Conference Proceedings, Analysis, Probability and Mathematical Physics on Fractals, Chapter 18, pp. 557–567 (2020). arXiv:1507.05682
Akkermans, E.: Statistical mechanics and quantum fields on fractals. In: Carfì, D., Lapidus, M.L., Pearse, E.P.J., van Frankenhuijsen, M. (eds.) Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics. II. Fractals in Applied Mathematics, Contemporary Mathematics, vol. 601. American Mathematical Society, Providence, RI. ISBN: 978-0-8218-9148-3 (2013)
Dunne, G.V.: Heat kernels and zeta functions on fractals. J. Phys. A 45(37), 374016 (2012)
Alonso-Ruiz, P., Kelleher, D.J., Teplyaev, A.: Energy and Laplacian on Hanoi-type fractal quantum graphs. J. Phys. A 49(16), 165206 (2016)
Hinz, M., Meinert, M.: On the viscous Burgers equation on metric graphs and fractals. J. Fractal Geom. 7(2), 137–182 (2020)
Mograby, G., Derevyagin, M., Dunne, G.V., Teplyaev, A.: Spectra of perfect state transfer Hamiltonians on fractal-like graphs. arXiv:2003.11190 (2020)
Mograby, G., Derevyagin, M., Dunne, G.V., Teplyaev, A.: Hamiltonian systems, Toda lattices, solitons, Lax pairs on weighted Z-graded graphs. arXiv:2008.04897 (2020)
Krön, B., Teufl, E.: Asymptotics of the transition probabilities of the simple random walk on self-similar graphs. Trans. Am. Math. Soc. 356(1), 393–414 (2004)
Lang, U., Plaut, C.: Bilipschitz embeddings of metric spaces into space forms. Geom. Dedicata 87(1–3), 285–307 (2001)
Szegő, G.: Orthogonal Polynomials. Colloquium Publications, vol. XXIII, 4th edn. American Mathematical Society, Providence (1975)
Acknowledgements
This research was supported in part by the University of Connecticut Research Excellence Program, by DOE Grant DE-SC0010339 and by NSF DMS Grants 1613025 and 2008844. The authors are grateful to Eric Akkermans, Patricia Alonso-Ruiz, and Gabor Lippner for interesting and helpful discussions. The authors are grateful to anonymous referees for suggested improvements to the paper.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Derevyagin, M., Dunne, G.V., Mograby, G. et al. Perfect quantum state transfer on diamond fractal graphs. Quantum Inf Process 19, 328 (2020). https://doi.org/10.1007/s11128-020-02828-w
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-020-02828-w
Keywords
- Quantum state transfer
- Quantum computer
- Spin chain
- Hierarchical graphs
- Diamond fractal
- Hamiltonians with engineered couplings
- Quantum channels