Skip to main content
Log in

Vacuum-based quantum random number generator using multi-mode coherent states

Quantum Information Processing Aims and scope Submit manuscript

Cite this article

Abstract

We present an optical quantum random number generator based on vacuum fluctuation measurements that uses multi-mode coherent states generated by electro-optical phase modulation of an intense optical carrier. In this approach the weak coherent multi-mode state (or a vacuum state) interferes with the carrier, which acts as a local oscillator, on each side mode independently. The proposed setup can effectively compensate for any deviations between the two arms of a balanced detector by controlling the modulation index of the modulator. We perform a proof-of-principle experiment and demonstrate random number generation with a possibility of real-time randomness extraction at the rate of 400 Mbit/s. The proposed concept has a potential for randomness generation rates comparable to the widely employed vacuum-based quantum random number generators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ferrenberg, A.M., Landau, D., Wong, Y.J.: Monte Carlo simulations: hidden errors from “good” random number generators. Phys. Rev. Lett. 69(23), 3382 (1992)

    ADS  Google Scholar 

  2. Metropolis, N., Ulam, S.: The Monte Carlo method. J. Am. Stat. Assoc. 44(247), 335 (1949)

    MATH  Google Scholar 

  3. Gennaro, R.: Randomness in cryptography. IEEE Secur. Priv. 4(2), 64 (2006)

    Google Scholar 

  4. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145 (2002)

    ADS  MATH  Google Scholar 

  5. Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V., Wehner, S.: Bell nonlocality. Rev. Mod. Phys. 86(2), 419 (2014)

    ADS  Google Scholar 

  6. Nisan, N., Wigderson, A.: Hardness versus randomness. J. Comput. Syst. Sci. 49(2), 149 (1994)

    MATH  Google Scholar 

  7. Johnston, D.: Random Number Generators-Principles and Practices: A Guide for Engineers and Programmers. A Guide for Engineers and Programmers (De Gruyter, Random Number Generators-Principles and Practices) (2018)

  8. Haw, J.Y., Assad, S., Lance, A., Ng, N., Sharma, V., Lam, P.K., Symul, T.: Maximization of extractable randomness in a quantum random-number generator. Phys. Rev. Appl. 3(5), 054004 (2015)

    ADS  Google Scholar 

  9. Renner, R.: Security of quantum key distribution. Int. J. Quantum Inf. 6(01), 1 (2008)

    MATH  Google Scholar 

  10. Kozubov, A., Gaidash, A., Miroshnichenko, G.: Finite-key security for quantum key distribution systems utilizing weak coherent states. arXiv preprint arXiv:1903.04371 (2019)

  11. Jennewein, T., Achleitner, U., Weihs, G., Weinfurter, H., Zeilinger, A.: A fast and compact quantum random number generator. Rev. Sci. Instrum. 71(4), 1675 (2000)

    ADS  Google Scholar 

  12. Cao, Z., Zhou, H., Yuan, X., Ma, X.: Source-independent quantum random number generation. Phys. Rev. X 6(1), 011020 (2016)

    Google Scholar 

  13. Sanguinetti, M.A., Lim, B., Houlmann, C.C.W., Zbinden, R.: Quantum random number generation for 1.25-GHz quantum key distribution systems. J. Light. Technol. 33(13), 2855 (2015)

    Google Scholar 

  14. Pironio, S., Acín, A., Massar, S., de La Giroday, A.B., Matsukevich, D.N., Maunz, P., Olmschenk, S., Hayes, D., Luo, L., Manning, T.A., et al.: Random numbers certified by Bell’s theorem. Nature 464(7291), 1021 (2010)

    ADS  Google Scholar 

  15. Xu, F., Shapiro, J.H., Wong, F.N.: Experimental fast quantum random number generation using high-dimensional entanglement with entropy monitoring. Optica 3(11), 1266 (2016)

    ADS  Google Scholar 

  16. Guo, H., Tang, W., Liu, Y., Wei, W.: Truly random number generation based on measurement of phase noise of a laser. Phys. Rev. E 81(5), 051137 (2010)

    ADS  Google Scholar 

  17. Xu, F., Qi, B., Ma, X., Xu, H., Zheng, H., Lo, H.K.: Ultrafast quantum random number generation based on quantum phase fluctuations. Opt. Express 20(11), 12366 (2012)

    ADS  Google Scholar 

  18. Abellán, C., Amaya, W., Jofre, M., Curty, M., Acín, A., Capmany, J., Pruneri, V., Mitchell, M.: Ultra-fast quantum randomness generation by accelerated phase diffusion in a pulsed laser diode. Opt. Express 22(2), 1645 (2014)

    ADS  Google Scholar 

  19. Shi, Y., Chng, B., Kurtsiefer, C.: Random numbers from vacuum fluctuations. Appl. Phys. Lett. 109(4), 041101 (2016)

    ADS  Google Scholar 

  20. Gabriel, C., Wittmann, C., Sych, D., Dong, R., Mauerer, W., Andersen, U.L., Marquardt, C., Leuchs, G.: A generator for unique quantum random numbers based on vacuum states. Nat. Photon. 4(10), 711 (2010)

    ADS  Google Scholar 

  21. Zhu, Y., He, G., Zeng, G.: Unbiased quantum random number generation based on squeezed vacuum state. Int. J. Quantum Inf. 10(01), 1250012 (2012)

    MATH  Google Scholar 

  22. Zhou, Q., Valivarthi, R., John, C., Tittel, W.: Practical quantum random-number generation based on sampling vacuum fluctuations. Quantum Eng. 1(1), e8 (2019)

    Google Scholar 

  23. Xu, B., Chen, Z., Li, Z., Yang, J., Su, Q., Huang, W., Zhang, Y., Guo, H.: High speed continuous variable source-independent quantum random number generation. Quantum Sci. Technol. 4(2), 025013 (2019)

    ADS  Google Scholar 

  24. Zheng, Z., Zhang, Y., Huang, W., Yu, S., Guo, H.: 6 Gbps real-time optical quantum random number generator based on vacuum fluctuation. Rev. Sci. Instrum. 90(4), 043105 (2019)

    ADS  Google Scholar 

  25. Avesani, M., Marangon, D.G., Vallone, G., Villoresi, P.: Source-device-independent heterodyne-based quantum random number generator at 17 Gbps. Nat. Commun. 9(1), 1 (2018)

    Google Scholar 

  26. Huang, L., Zhou, H.: Integrated Gbps quantum random number generator with real-time extraction based on homodyne detection. JOSA B 36(3), B130 (2019)

    Google Scholar 

  27. Guo, X., Cheng, C., Wu, M., Gao, Q., Li, P., Guo, Y.: Parallel real-time quantum random number generator. Opt. Lett. 44(22), 5566 (2019)

    ADS  Google Scholar 

  28. Haylock, B., Peace, D., Lenzini, F., Weedbrook, C., Lobino, M.: Multiplexed quantum random number generation. Quantum 3, 141 (2019)

    Google Scholar 

  29. Raffaelli, F., Ferranti, G., Mahler, D.H., Sibson, P., Kennard, J.E., Santamato, A., Sinclair, G., Bonneau, D., Thompson, M.G., Matthews, J.C.: A homodyne detector integrated onto a photonic chip for measuring quantum states and generating random numbers. Quantum Sci. Technol. 3(2), 025003 (2018)

    ADS  Google Scholar 

  30. Merolla, J.M., Mazurenko, Y., Goedgebuer, J.P., Porte, H., Rhodes, W.T.: Phase-modulation transmission system for quantum cryptography. Opt. Lett. 24(2), 104 (1999)

    ADS  Google Scholar 

  31. Gleim, A., Egorov, V., Nazarov, Y.V., Smirnov, S., Chistyakov, V., Bannik, O., Anisimov, A., Kynev, S., Ivanova, A., Collins, R., et al.: Secure polarization-independent subcarrier quantum key distribution in optical fiber channel using BB84 protocol with a strong reference. Opt. Express 24(3), 2619 (2016)

    ADS  Google Scholar 

  32. Miroshnichenko, G., Kozubov, A., Gaidash, A., Gleim, A., Horoshko, D.: Security of subcarrier wave quantum key distribution against the collective beam-splitting attack. Opt. Express 26(9), 11292 (2018)

    ADS  Google Scholar 

  33. Kynev, S., Chistyakov, V., Smirnov, S., Volkova, K., Egorov, V., Gleim, A.: J. Phys. Conf. Ser., vol. 917 (2017)

  34. Chistiakov, V., Kozubov, A., Gaidash, A., Gleim, A., Miroshnichenko, G.: Feasibility of twin-field quantum key distribution based on multi-mode coherent phase-coded states. Opt. Express 27(25), 36551 (2019)

    ADS  Google Scholar 

  35. Samsonov, E., Goncharov, R., Gaidash, A., Kozubov, A., Egorov, V., Gleim, A.: Subcarrier wave continuous variable quantum key distribution with discrete modulation: mathematical model and finite-key analysis. Sci. Rep. 10(1), 10034 (2020)

    ADS  Google Scholar 

  36. Mel’nik, K., Arslanov, N., Bannik, O., Gilyazov, L., Egorov, V., Gleim, A., Moiseev, S.: Using a heterodyne detection scheme in a subcarrier wave quantum communication system. Bull. Russ. Acad. Sci. Phys. 82(8), 1038 (2018)

    Google Scholar 

  37. Guo, X., Liu, R., Li, P., Cheng, C., Wu, M., Guo, Y.: Enhancing extractable quantum entropy in vacuum-based quantum random number generator. Entropy 20(11), 819 (2018)

    ADS  Google Scholar 

  38. Marsaglia.: DIEHARD Test Suite. http://www.stat.fsu.edu/pub/diehard (1998)

  39. Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E.: A statistical test suite for random and pseudorandom number generators for cryptographic applications. Technical Report, Boozallen and Hamilton Inc., Mcleanva (2001)

  40. Varshalovich, D., Moskalev, A.: Khersonski, Quantum Theory of Angular Momentum. World Scientific, Singapore (1988)

    Google Scholar 

  41. Miroshnichenko, G.P., Kiselev, A.D., Trifanov, A.I., Gleim, A.V.: Algebraic approach to electro-optic modulation of light: exactly solvable multimode quantum model. JOSA B 34(6), 1177 (2017)

    ADS  Google Scholar 

  42. Fips, P.: Advanced Encryption Standard (AES). National Institute of Standards and Technology, Gaithersburg (2001)

    Google Scholar 

  43. Tomamichel, M., Schaffner, C., Smith, A., Renner, R.: Leftover hashing against quantum side information. IEEE Trans. Inf. Theory 57(8), 5524 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Russian Ministry of Education (Grant No. 2019-0903).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. E. Pervushin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samsonov, E.O., Pervushin, B.E., Ivanova, A.E. et al. Vacuum-based quantum random number generator using multi-mode coherent states. Quantum Inf Process 19, 326 (2020). https://doi.org/10.1007/s11128-020-02813-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02813-3

Keywords

Navigation