Abstract
We present an optical quantum random number generator based on vacuum fluctuation measurements that uses multi-mode coherent states generated by electro-optical phase modulation of an intense optical carrier. In this approach the weak coherent multi-mode state (or a vacuum state) interferes with the carrier, which acts as a local oscillator, on each side mode independently. The proposed setup can effectively compensate for any deviations between the two arms of a balanced detector by controlling the modulation index of the modulator. We perform a proof-of-principle experiment and demonstrate random number generation with a possibility of real-time randomness extraction at the rate of 400 Mbit/s. The proposed concept has a potential for randomness generation rates comparable to the widely employed vacuum-based quantum random number generators.
This is a preview of subscription content,
to check access.


Similar content being viewed by others
References
Ferrenberg, A.M., Landau, D., Wong, Y.J.: Monte Carlo simulations: hidden errors from “good” random number generators. Phys. Rev. Lett. 69(23), 3382 (1992)
Metropolis, N., Ulam, S.: The Monte Carlo method. J. Am. Stat. Assoc. 44(247), 335 (1949)
Gennaro, R.: Randomness in cryptography. IEEE Secur. Priv. 4(2), 64 (2006)
Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145 (2002)
Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V., Wehner, S.: Bell nonlocality. Rev. Mod. Phys. 86(2), 419 (2014)
Nisan, N., Wigderson, A.: Hardness versus randomness. J. Comput. Syst. Sci. 49(2), 149 (1994)
Johnston, D.: Random Number Generators-Principles and Practices: A Guide for Engineers and Programmers. A Guide for Engineers and Programmers (De Gruyter, Random Number Generators-Principles and Practices) (2018)
Haw, J.Y., Assad, S., Lance, A., Ng, N., Sharma, V., Lam, P.K., Symul, T.: Maximization of extractable randomness in a quantum random-number generator. Phys. Rev. Appl. 3(5), 054004 (2015)
Renner, R.: Security of quantum key distribution. Int. J. Quantum Inf. 6(01), 1 (2008)
Kozubov, A., Gaidash, A., Miroshnichenko, G.: Finite-key security for quantum key distribution systems utilizing weak coherent states. arXiv preprint arXiv:1903.04371 (2019)
Jennewein, T., Achleitner, U., Weihs, G., Weinfurter, H., Zeilinger, A.: A fast and compact quantum random number generator. Rev. Sci. Instrum. 71(4), 1675 (2000)
Cao, Z., Zhou, H., Yuan, X., Ma, X.: Source-independent quantum random number generation. Phys. Rev. X 6(1), 011020 (2016)
Sanguinetti, M.A., Lim, B., Houlmann, C.C.W., Zbinden, R.: Quantum random number generation for 1.25-GHz quantum key distribution systems. J. Light. Technol. 33(13), 2855 (2015)
Pironio, S., Acín, A., Massar, S., de La Giroday, A.B., Matsukevich, D.N., Maunz, P., Olmschenk, S., Hayes, D., Luo, L., Manning, T.A., et al.: Random numbers certified by Bell’s theorem. Nature 464(7291), 1021 (2010)
Xu, F., Shapiro, J.H., Wong, F.N.: Experimental fast quantum random number generation using high-dimensional entanglement with entropy monitoring. Optica 3(11), 1266 (2016)
Guo, H., Tang, W., Liu, Y., Wei, W.: Truly random number generation based on measurement of phase noise of a laser. Phys. Rev. E 81(5), 051137 (2010)
Xu, F., Qi, B., Ma, X., Xu, H., Zheng, H., Lo, H.K.: Ultrafast quantum random number generation based on quantum phase fluctuations. Opt. Express 20(11), 12366 (2012)
Abellán, C., Amaya, W., Jofre, M., Curty, M., Acín, A., Capmany, J., Pruneri, V., Mitchell, M.: Ultra-fast quantum randomness generation by accelerated phase diffusion in a pulsed laser diode. Opt. Express 22(2), 1645 (2014)
Shi, Y., Chng, B., Kurtsiefer, C.: Random numbers from vacuum fluctuations. Appl. Phys. Lett. 109(4), 041101 (2016)
Gabriel, C., Wittmann, C., Sych, D., Dong, R., Mauerer, W., Andersen, U.L., Marquardt, C., Leuchs, G.: A generator for unique quantum random numbers based on vacuum states. Nat. Photon. 4(10), 711 (2010)
Zhu, Y., He, G., Zeng, G.: Unbiased quantum random number generation based on squeezed vacuum state. Int. J. Quantum Inf. 10(01), 1250012 (2012)
Zhou, Q., Valivarthi, R., John, C., Tittel, W.: Practical quantum random-number generation based on sampling vacuum fluctuations. Quantum Eng. 1(1), e8 (2019)
Xu, B., Chen, Z., Li, Z., Yang, J., Su, Q., Huang, W., Zhang, Y., Guo, H.: High speed continuous variable source-independent quantum random number generation. Quantum Sci. Technol. 4(2), 025013 (2019)
Zheng, Z., Zhang, Y., Huang, W., Yu, S., Guo, H.: 6 Gbps real-time optical quantum random number generator based on vacuum fluctuation. Rev. Sci. Instrum. 90(4), 043105 (2019)
Avesani, M., Marangon, D.G., Vallone, G., Villoresi, P.: Source-device-independent heterodyne-based quantum random number generator at 17 Gbps. Nat. Commun. 9(1), 1 (2018)
Huang, L., Zhou, H.: Integrated Gbps quantum random number generator with real-time extraction based on homodyne detection. JOSA B 36(3), B130 (2019)
Guo, X., Cheng, C., Wu, M., Gao, Q., Li, P., Guo, Y.: Parallel real-time quantum random number generator. Opt. Lett. 44(22), 5566 (2019)
Haylock, B., Peace, D., Lenzini, F., Weedbrook, C., Lobino, M.: Multiplexed quantum random number generation. Quantum 3, 141 (2019)
Raffaelli, F., Ferranti, G., Mahler, D.H., Sibson, P., Kennard, J.E., Santamato, A., Sinclair, G., Bonneau, D., Thompson, M.G., Matthews, J.C.: A homodyne detector integrated onto a photonic chip for measuring quantum states and generating random numbers. Quantum Sci. Technol. 3(2), 025003 (2018)
Merolla, J.M., Mazurenko, Y., Goedgebuer, J.P., Porte, H., Rhodes, W.T.: Phase-modulation transmission system for quantum cryptography. Opt. Lett. 24(2), 104 (1999)
Gleim, A., Egorov, V., Nazarov, Y.V., Smirnov, S., Chistyakov, V., Bannik, O., Anisimov, A., Kynev, S., Ivanova, A., Collins, R., et al.: Secure polarization-independent subcarrier quantum key distribution in optical fiber channel using BB84 protocol with a strong reference. Opt. Express 24(3), 2619 (2016)
Miroshnichenko, G., Kozubov, A., Gaidash, A., Gleim, A., Horoshko, D.: Security of subcarrier wave quantum key distribution against the collective beam-splitting attack. Opt. Express 26(9), 11292 (2018)
Kynev, S., Chistyakov, V., Smirnov, S., Volkova, K., Egorov, V., Gleim, A.: J. Phys. Conf. Ser., vol. 917 (2017)
Chistiakov, V., Kozubov, A., Gaidash, A., Gleim, A., Miroshnichenko, G.: Feasibility of twin-field quantum key distribution based on multi-mode coherent phase-coded states. Opt. Express 27(25), 36551 (2019)
Samsonov, E., Goncharov, R., Gaidash, A., Kozubov, A., Egorov, V., Gleim, A.: Subcarrier wave continuous variable quantum key distribution with discrete modulation: mathematical model and finite-key analysis. Sci. Rep. 10(1), 10034 (2020)
Mel’nik, K., Arslanov, N., Bannik, O., Gilyazov, L., Egorov, V., Gleim, A., Moiseev, S.: Using a heterodyne detection scheme in a subcarrier wave quantum communication system. Bull. Russ. Acad. Sci. Phys. 82(8), 1038 (2018)
Guo, X., Liu, R., Li, P., Cheng, C., Wu, M., Guo, Y.: Enhancing extractable quantum entropy in vacuum-based quantum random number generator. Entropy 20(11), 819 (2018)
Marsaglia.: DIEHARD Test Suite. http://www.stat.fsu.edu/pub/diehard (1998)
Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E.: A statistical test suite for random and pseudorandom number generators for cryptographic applications. Technical Report, Boozallen and Hamilton Inc., Mcleanva (2001)
Varshalovich, D., Moskalev, A.: Khersonski, Quantum Theory of Angular Momentum. World Scientific, Singapore (1988)
Miroshnichenko, G.P., Kiselev, A.D., Trifanov, A.I., Gleim, A.V.: Algebraic approach to electro-optic modulation of light: exactly solvable multimode quantum model. JOSA B 34(6), 1177 (2017)
Fips, P.: Advanced Encryption Standard (AES). National Institute of Standards and Technology, Gaithersburg (2001)
Tomamichel, M., Schaffner, C., Smith, A., Renner, R.: Leftover hashing against quantum side information. IEEE Trans. Inf. Theory 57(8), 5524 (2011)
Acknowledgements
This work was financially supported by Russian Ministry of Education (Grant No. 2019-0903).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Samsonov, E.O., Pervushin, B.E., Ivanova, A.E. et al. Vacuum-based quantum random number generator using multi-mode coherent states. Quantum Inf Process 19, 326 (2020). https://doi.org/10.1007/s11128-020-02813-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-020-02813-3