Skip to main content

Quantum bicyclic hyperbolic codes


Bicyclic codes are a generalization of the one-dimensional (1D) cyclic codes to two dimensions (2D). Similar to the 1D case, in some cases, 2D cyclic codes can also be constructed to guarantee a specified minimum distance. Many aspects of these codes are yet unexplored. Motivated by the problem of constructing quantum codes, we study some structural properties of certain bicyclic codes. We show that a primitive narrow-sense bicyclic hyperbolic code of length \(n^2\) contains its dual if and only if its design distance is lower than \(n-O(\sqrt{n})\). We extend the sufficiency condition to the non-primitive case as well. We also show that over quadratic extension fields, a primitive bicyclic hyperbolic code of length \(n^2\) contains Hermitian dual if and only if its design distance is lower than \(n-O(\sqrt{n})\). Our results are analogous to some structural results known for BCH and Reed–Solomon codes. They further our understanding of bicyclic codes. We also give an application of these results by showing that we can construct two classes of quantum bicyclic codes based on our results.

This is a preview of subscription content, access via your institution.

Fig. 1


  1. 1.

    Aly, S.A., Klappenecker, A., Sarvepalli, P.K.: On quantum and classical BCH codes. IEEE Trans. Inf. Theory 53(3), 1183–1188 (2007)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Ashikhmin, A., Knill, E.: Nonbinary quantum stabilizer codes. IEEE Trans. Inf. Theory 47(7), 3065–3072 (2001)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Blahut, R.E.: Algebraic Codes on Lines, Planes and Curves. University Press, Cambridge (2008)

    MATH  Google Scholar 

  4. 4.

    Breuckmann, N.P., Terhal, B.M.: Constructions and noise threshold of hyperbolic surface codes. IEEE Trans. Inf. Theory 62(6), 3731–3744 (2016)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Calderbank, A.R., Rains, E.M., Shor, P.M., Sloane, N.J.A.: Quantum error correction via codes over GF(4). IEEE Trans. Inf. Theory 44(4), 1369–1387 (1998)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098–1105 (1996). 8

    ADS  Article  Google Scholar 

  7. 7.

    Chen, B., Ling, S., Zhang, G.: Application of constacyclic codes to quantum MDS codes. IEEE Trans. Inf. Theory 61(3), 1474–1484 (2015)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Garani, S.S., Dolecek, L., Barry, J., Sala, F., Vasić, B.: Signal processing and coding techniques for 2-d magnetic recording: an overview. Proc. IEEE 106(2), 286–318 (2018)

    Article  Google Scholar 

  9. 9.

    Gottesman, D.: Stabilizer codes and quantum error correction (1997)

  10. 10.

    Grassl, M., Beth, T., Rötteler, M.: On optimal quantum codes. Int. J. Quantum Inf. 2(1), 757–775 (2004)

    Article  Google Scholar 

  11. 11.

    Grassl, M., Beth, T., Pellizzari, T.: Codes for the quantum erasure channel. Phys. Rev. A 56, 33–38 (1997). 7

    ADS  MathSciNet  Article  Google Scholar 

  12. 12.

    Imai, H.: A theory of two-dimensional cyclic codes. Inf. Control 34(1), 1–21 (1977)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Ketkar, A., Klappenecker, A., Kumar, S., Sarvepalli, P.K.: Nonbinary stabilizer codes over finite fields. IEEE Trans. Inf. Theory 52(11), 4892–4910 (2006)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Li, R., Zuo, F., Liu, Y., Xu, Z.: Hermitian dual containing BCH codes and construction of new quantum codes. Quantum Inf. Comput. 13(1–2), 21–35 (2013)

    MathSciNet  Google Scholar 

  15. 15.

    Liu, Y., Li, R., Guo, G., Wang, J.: Some nonprimitive BCH codes and related quantum codes. IEEE Trans. Inf. Theory 65, 7829–7839 (2019)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Liu, Y., Li, R., Lv, L., Ma, Y.: A class of constacyclic BCH codes and new quantum codes. Quantum Inf. Process. 16(3), 1–16 (2017)

    ADS  MathSciNet  Article  Google Scholar 

  17. 17.

    Roy, S., Garani, S.S.: Two-dimensional algebraic codes for multiple burst error correction. IEEE Commun. Lett. 23(10), 1684–1687 (2019)

    Article  Google Scholar 

  18. 18.

    Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793–797 (1996). 7

    ADS  MathSciNet  Article  Google Scholar 

  19. 19.

    Steane, A.M.: Enlargement of Calderbank–Shor–Steane quantum codes. IEEE Trans. Inf. Theory 45(7), 2492–2495 (1999). 11

    MathSciNet  Article  Google Scholar 

  20. 20.

    Tansuwannont, T., Chamberland, C., Leung, D.: Flag fault-tolerant error correction, measurement, and quantum computation for cyclic Calderbank–Shor–Steane codes. Phys. Rev. A 101(1), 012342 (2020)

    ADS  Article  Google Scholar 

  21. 21.

    Yuan, J., Zhu, S., Kai, X., Li, P.: On the construction of quantum constacyclic codes. Des. Codes Cryptogr. 85(1), 179–190 (2017)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Zhang, M., Li, Z., Xing, L., Tang, N.: Construction of some new quantum BCH codes. IEEE Access 6, 36122–36131 (2018)

    Article  Google Scholar 

Download references


We thank the referees for their helpful comments in improving the presentation of the paper. This research was supported by the Science and Engineering Research Board, Department of Science and Technology, under Grant No. EMR/2017/005454.

Author information



Corresponding author

Correspondence to Sankara Sai Chaithanya Rayudu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rayudu, S.S.C., Sarvepalli, P.K. Quantum bicyclic hyperbolic codes. Quantum Inf Process 19, 228 (2020).

Download citation


  • Quantum error correction
  • Quantum codes
  • Bicyclic codes
  • BCH codes