Skip to main content
Log in

Pulsed entanglement and quantum steering in a three-mode electro-optomechanical system

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We investigate bipartite entanglement and quantum steering in a three-mode, hybrid electro-optomechanical system consisting of a Fabry–Perot optical cavity, a nanomechanical oscillator and a lumped-element microwave cavity. The nanomechanical resonator is directly coupled to the optical cavity on the one side via the moving mirror of the Fabry–Perot cavity, and on the other side, it is capacitively coupled to the microwave cavity. There is no direct coupling between the cavity modes. The optical cavity is blue-detuned through excitation by a laser source emitting short pulses, while the microwave cavity is red-detuned through excitation by a voltage pulse generator. The presence of bipartite entanglement between different modes is verified based on the asymmetric entanglement criteria. Specifically, the system is shown to behave effectively as a two-mode system in which a perfect bipartite EPR state can be formed by the optical cavity and the mirror. The possibility of generating genuine tripartite entanglement is also investigated by examining the necessary conditions for multiparty multimode entanglement. Simultaneous coupling of the three modes is shown to be possible in accordance with the genuine tripartite entanglement criteria. Furthermore, we establish the existence of quantum steering between the modes using the steering parameter formality and examine the monogamy relations to quantify the amount of bipartite steering shared between different modes. Notably, steering is found to be present only between the mechanical and the optical cavity modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gröblacher, S., Hammerer, K., Vanner, M.R., Aspelmeyer, M.: Observation of strong coupling between a micromechanical resonator and an optical cavity field. Nature 460, 724 (2009)

    ADS  Google Scholar 

  2. Genes, C., Mari, A., Vitali, D., Tombesi, P.: Quantum effects in optomechanical systems. Adv. At. Mol. Opt. Phys. 57, 33 (2009)

    ADS  Google Scholar 

  3. Aspelmeyer, M., Gröblacher, S., Hammerer, K., Kiesel, N.: Quantum optomechanics-throwing a glance. J. Opt. Soc. Am. B 27, 189 (2010)

    ADS  Google Scholar 

  4. Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014)

    ADS  Google Scholar 

  5. Muschik, C.A., Krauter, H., Hammerer, K., Polzik, E.S.: Quantum information at the interface of light with atomic ensembles and micromechanical oscillators. Quantum Inf. Process. 10, 839 (2011)

    Google Scholar 

  6. Mancini, S., Giovannetti, V., Vitali, D., Tombesi, P.: Entangling macroscopic oscillators exploiting radiation pressure. Phys. Rev. Lett. 88, 120401 (2002)

    ADS  Google Scholar 

  7. Ferreira, A., Guerreiro, A., Vedral, V.: Macroscopic thermal entanglement due to radiation pressure. Phys. Rev. Lett. 96, 060407 (2006)

    ADS  Google Scholar 

  8. Hartmann, M.J., Plenio, M.B.: Steady state entanglement in the mechanical vibrations of two dielectric membranes. Phys. Rev. Lett. 101, 200503 (2008)

    ADS  Google Scholar 

  9. Hammerer, K., Wallquist, M., Genes, C., Ludwig, M., Marquardt, F., Treutlein, P., Zoller, P., Ye, J., Kimble, H.J.: Strong coupling of a mechanical oscillator and a single atom. Phys. Rev. Lett. 103, 063005 (2009)

    ADS  Google Scholar 

  10. Paternostro, M., De Chiara, G., Palma, G.M.: Cold-atom-induced control of an optomechanical device. Phys. Rev. Lett. 104, 243602 (2010)

    ADS  Google Scholar 

  11. Camerer, S., Korppi, M., Jockel, A., Hunger, D., Hansch, T.W., Treutlein, P.: Realization of an optomechanical interface between ultracold atoms and a membrane. Phys. Rev. Lett. 107, 223001 (2011)

    ADS  Google Scholar 

  12. Huang, K., Yan, Y., Zhu, J., Xiao, Y., Li, G.: Non-classical non-Gaussian state of a mechanical resonator via selectively incoherent damping in three-mode optomechanical systems. Phys. Rev. A 93, 033832 (2016)

    ADS  Google Scholar 

  13. Sun, L.H., Li, G.X., Ficek, Z.: Coherence and entanglement in a nano-mechanical cavity. Phys. Rev. A 85, 022327 (2012)

    ADS  Google Scholar 

  14. Wang, Y.D., Clerk, A.A.: Reservoir-engineered entanglement in optomechanical systems. Phys. Rev. Lett. 110, 253601 (2013)

    ADS  Google Scholar 

  15. Barzanjeh, S., Vitali, D., Tombesi, P., Milburn, G.J.: Entangling optical and microwave cavity modes by means of a nanomechanical resonator. Phys. Rev. A 84, 042342 (2011)

    ADS  Google Scholar 

  16. Andrews, R.W., Peterson, R.W., Purdy, T.P., Cicak, K., Simmonds, R.W., Regal, C.A., Lehnert, K.W.: Bidirectional and efficient conversion between microwave and optical light. Nat. Phys. 10, 321 (2014)

    Google Scholar 

  17. Barzanjeh, S., Abdi, M., Milburn, G.J., Tombesi, P., Vitali, D.: Reversible optical-to-microwave quantum interface. Phys. Rev. Lett. 109, 130503 (2012)

    ADS  Google Scholar 

  18. Bagci, T., Simonsen, A., Schmid, S., Villanueva, L.G., Zeuthen, E., Appel, J., Taylor, J.M., Sørensen, A., Usami, K., Schliesser, A., Polzik, E.S.: Optical detection of radio waves through a nanomechanical transducer. Nature 507, 81 (2014)

    ADS  Google Scholar 

  19. Cernotik, O., Hammerer, K.: Measurement-induced long-distance entanglement of superconducting qubits using optomechanical transducers. Phys. Rev. A 94, 012340 (2016)

    ADS  Google Scholar 

  20. Bochmann, J., Vainsencher, A., Awschalom, D.D., Cleland, A.N.: Nanomechanical coupling between microwave and optical photons. Nat. Phys. 9, 712 (2013)

    Google Scholar 

  21. Hofer, S.G., Wieczorek, W., Aspelmeyer, M., Hammerer, K.: Quantum entanglement and teleportation in pulsed cavity optomechanics. Phys. Rev. A 84, 052327 (2011)

    ADS  Google Scholar 

  22. He, Q.Y., Ficek, Z.: Einstein–Podolsky–Rosen paradox and quantum steering in a three-mode optomechanical system. Phys. Rev. A 89, 022332 (2014)

    ADS  Google Scholar 

  23. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    MATH  ADS  Google Scholar 

  24. Wang, Y.D., Chesi, S., Clerk, A.A.: Bipartite and tripartite output entanglement in three-mode optomechanical systems. Phys. Rev. A 91, 013807 (2015)

    ADS  Google Scholar 

  25. He, Q.Y., Reid, M.D.: Einstein–Podolsky–Rosen paradox and quantum steering in pulsed optomechanics. Phys. Rev. A 88, 052121 (2013)

    ADS  Google Scholar 

  26. Wang, M., Gong, Q.H., Ficek, Z., He, Q.Y.: Efficient scheme for perfect collective Einstein–Podolsky–Rosen steering. Sci. Rep. 5, 12346 (2015)

    ADS  Google Scholar 

  27. Eghbali-Arani, M., Ameri, V.: Entanglement of two hybrid optomechanical cavities composed of BEC atoms under Bell detection. Quantum Inf. Process. 16, 47 (2017)

    MathSciNet  MATH  ADS  Google Scholar 

  28. Gebremariam, T., Mazaheri, M., Zeng, Y., Li, C.: Dynamical quantum steering in a pulsed hybrid opto-electro-mechanical system. J. Opt. Soc. Am. B 36, 168 (2019)

    ADS  Google Scholar 

  29. Simon, R.: Peres–Horodecki separability criterion for continuous variable systems. Phys. Rev. Lett. 84, 2726 (2000)

    ADS  Google Scholar 

  30. Teufel, J.D., Donner, T., Li, D., Harlow, J.W., Allman, M.S., Cicak, K., Sirois, A.J., Whittaker, J.D., Lehnert, K.W., Simmonds, R.W.: Sideband cooling of micromechanical motion to the quantum ground state. Nature 471, 204 (2011)

    ADS  Google Scholar 

  31. Vanner, M.R., Pikovski, I., Cole, G.D., Kim, M.S., Brukner, C., Hammerer, K., Milburn, G.J., Aspelmeyer, M.: Pulsed quantum optomechanics. Proc. Natl. Acad. Sci. 108, 16182 (2011)

    ADS  Google Scholar 

  32. Bowen, W.P., Milburn, G.J.: Quantum Opto-mechanics. CRC Press, Berlin (2016)

    Google Scholar 

  33. Walls, D.F., Milburn, G.J.: Quantum Optics. Springer, Berlin (1994)

    MATH  Google Scholar 

  34. Ghobadi, R., Kumar, S., Pepper, B., Bouwmeester, D., Lvovsky, A.I., Simon, C.: arXiv:1401.2356 [quant-ph]

  35. Ghobadi, R., Kumar, S., Pepper, B., Bouwmeester, D., Lvovsky, A.I., Simon, C.: Opto-mechanical micro-macro entanglement. Phys. Rev. Lett. 112, 080503 (2014)

    ADS  Google Scholar 

  36. Weedbrook, C., Pirandola, S., Garcia-Patron, R., Cerf, N.J., Ralph, T.C., Shapiro, J.H., Lloyd, S.: Gaussian quantum information. Rev. Mod. Phys. 84, 621 (2012)

    ADS  Google Scholar 

  37. Duan, L.M., Giedke, G., Cirac, J.I., Zoller, P.: Inseparability criterion for continuous variable systems. Phys. Rev. Lett. 84, 2722 (2000)

    ADS  Google Scholar 

  38. Giovannetti, V., Mancini, S., Vitali, D., Tombesi, P.: Characterizing the entanglement of bipartite quantum systems. Phys. Rev. A 67, 022320 (2003)

    ADS  Google Scholar 

  39. He, Q.Y., Gong, Q.H., Reid, M.D.: Classifying directional gaussian entanglement, Einstein–Podolsky–Rosen steering, and discord. Phys. Rev. Lett. 114, 060402 (2015)

    ADS  Google Scholar 

  40. Riedinger, R., Wallucks, A., Marinkovi, I., Loschnauer, C., Aspelmeyer, M., Hong, S., Groblacher, S.: Remote quantum entanglement between two micromechanical oscillators. Nature 556, 473 (2018)

    ADS  Google Scholar 

  41. Teh, R.Y., Reid, M.D.: Criteria for genuine N-partite continuous-variable entanglement and Einstein–Podolsky–Rosen steering. Phys. Rev. A 90, 062337 (2014)

    ADS  Google Scholar 

  42. van Loock, P., Furusawa, A.: Detecting genuine multipartite continuous-variable entanglement. Phys. Rev. A 67, 052315 (2003)

    ADS  Google Scholar 

  43. Giedke, G., Kraus, B., Lewenstein, M., Cirac, J.I.: Separability properties of three-mode Gaussian states. Phys. Rev. A 64, 052303 (2001)

    ADS  Google Scholar 

  44. Li, J., Zhu, S.Y., Agarwal, G.S.: Magnon–Photon–Phonon entanglement in cavity magnomechanics. Phys. Rev. Lett. 121, 203601 (2018)

    ADS  Google Scholar 

  45. Schroedinger, S.: The present status of quantum mechanics. Naturwiss 23, 807 (1935)

    ADS  Google Scholar 

  46. Schroedinger, S.: Discussion of probability relations between separated systems. Proc. Camb. Philos. Soc. 31, 555 (1935)

    ADS  Google Scholar 

  47. Schroedinger, S.: Probability relations between separated systems. Proc. Camb. Philos. Soc. 32, 446 (1936)

    ADS  Google Scholar 

  48. Reid, M.D.: Demonstration of the Einstein–Podolsky–Rosen paradox using nondegenerate parametric amplification. Phys. Rev. A 40, 913 (1989)

    ADS  Google Scholar 

  49. Wiseman, H.M., Jones, S.J., Doherty, A.C.: Steering, Entanglement, nonlocality, and the Einstein–Podolsky–Rosen paradox. Phys. Rev. Lett. 98, 140402 (2007)

    MathSciNet  MATH  ADS  Google Scholar 

  50. Cavalcanti, E.G., Jones, S.J., Wiseman, H.M., Reid, M.D.: Experimental criteria for steering and the Einstein–Podolsky–Rosen paradox. Phys. Rev. A 80, 032112 (2009)

    ADS  Google Scholar 

  51. Kiesewetter, S., He, Q.Y., Drummond, P.D., Reid, M.D.: Scalable quantum simulation of pulsed entanglement and Einstein–Podolsky–Rosen steering in optomechanics. Phys. Rev. A 90, 043805 (2014)

    ADS  Google Scholar 

  52. Genes, C., Mari, A., Tombesi, P., Vitali, D.: Robust entanglement of a micromechanical resonator with output optical fields. Phys. Rev. A 78, 032316 (2008)

    ADS  Google Scholar 

  53. Hndchen, V., Eberle, T., Steinlechner, S., Samblowski, A., Franz, T., Werner, R.F., Schnabel, R.: Observation of one-way Einstein–Podolsky–Rosen steering. Nat. Photonics 6, 598 (2012)

    ADS  Google Scholar 

  54. Wagner, K., Janousek, J., Armstrong, S., Morizur, J.F., Lam, P.K., Bachor, H.A.: Mixed state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Z. Jalali-Mola for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Mazaheri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

Taking the input noise correlations into account, the expressions for the covariance matrix elements are given herein as a function of the normalized interaction time parameter r, parameters \(\alpha \) and \(\beta \) (defined in the main text), the scaled damping parameter \(\gamma \), the mean number of thermal phonons, \(n_{m}\), and the equilibrium number of photons, \(n_{a}\) and \(n_{b}\), in the optical and microwave cavities, respectively. Expressly, the elements of the covariance matrix can be written in the explicit form as

$$\begin{aligned} V_{11}= & {} V_{22}=(-\beta ^2e^{r}+\alpha ^2)^2(n_{a}+1/2) +4\alpha ^2\beta ^2 sinh^2r(n_{b}+1/2)\nonumber \\&+\beta ^2(-\sqrt{e^{2r}-1}+2\gamma sinhr)^2(n_{m}+1/2), \end{aligned}$$
(A.1)
$$\begin{aligned} V_{33}= & {} V_{44}=4\alpha ^2\beta ^2 sinh^2r(n_{a}+1/2) +(-\beta ^2+\alpha ^2e^{r})^2(n_{b}+1/2)\nonumber \\&+\alpha ^2(-\sqrt{e^{2r}-1}+2\gamma sinhr)^2(n_{m}+1/2), \end{aligned}$$
(A.2)
$$\begin{aligned} V_{55}= & {} V_{66}=\beta ^2(e^{2r}-1)(n_{a}+1/2) +\alpha ^2(e^{2r}-1)(n_{b}+1/2)\nonumber \\&+(e^{2r}-\gamma \sqrt{e^{2r}-1})(n_{m}+1/2), \end{aligned}$$
(A.3)
$$\begin{aligned} V_{12}= & {} -V_{21}=((-\beta ^2e^{r}+\alpha ^2)^2-4\alpha ^2\beta ^2 sinh^2r\nonumber \\&-\beta ^2(-\sqrt{e^{2r}-1}+2\gamma sinhr)^2)i/2, \end{aligned}$$
(A.4)
$$\begin{aligned} V_{13}= & {} V_{31}=2(-\beta ^2e^{r}+\alpha ^2)\alpha \beta sinhr(n_{a}+1/2)\nonumber \\&-2\alpha \beta sinhr(-\beta ^2+\alpha ^2e^{r})(n_{b}+1/2)\nonumber \\&-\alpha \beta (-\sqrt{e^{2r}-1}+2\gamma sinhr)^2(n_{m}+1/2), \end{aligned}$$
(A.5)
$$\begin{aligned} V_{14}= & {} -V_{41}=(-2(-\beta ^2e^{r}+\alpha ^2)\alpha \beta sinhr -2\alpha \beta sinhr(-\beta ^2+\alpha ^2e^{r})\nonumber \\&-\alpha \beta (-\sqrt{e^{2r}-1}+2\gamma sinhr)^2)i/2, \end{aligned}$$
(A.6)
$$\begin{aligned} V_{15}= & {} -V_{51}=((-\beta ^2e^{r}+\alpha ^2)\beta \sqrt{e^{2r}-1}\nonumber \\&+2 \alpha ^2 \beta sinhr\sqrt{e^{2r}-1} - \beta (-\sqrt{e^{2r}-1}\nonumber \\&+2\gamma sinhr)(e^r-\gamma \sqrt{e^{2r}-1}))i/2, \end{aligned}$$
(A.7)
$$\begin{aligned} V_{16}= & {} V_{61}=(-\beta ^2e^{r}+\alpha ^2)\beta \sqrt{e^{2r}-1}(n_{a}+1/2)\nonumber \\&-2\alpha ^2 \beta sinhr \sqrt{e^{2r}-1}(n_{b}+1/2)\nonumber \\&+\beta (-\sqrt{e^{2r}-1}+2\gamma sinhr)(e^r-\gamma \sqrt{e^{2r}-1})(n_{m}+1/2), \end{aligned}$$
(A.8)
$$\begin{aligned} V_{23}= & {} -V_{32}=V_{14}, \end{aligned}$$
(A.9)
$$\begin{aligned} V_{24}= & {} V_{42}=-V_{13}, \end{aligned}$$
(A.10)
$$\begin{aligned} V_{25}= & {} V_{52}=V_{16}, \end{aligned}$$
(A.11)
$$\begin{aligned} V_{26}= & {} -V_{62}=-V_{15}, \end{aligned}$$
(A.12)
$$\begin{aligned} V_{34}= & {} -V_{43}=(-4\alpha ^2\beta ^2 sinh^2r+(-\beta ^2+\alpha ^2e^{r})^2\nonumber \\&+\alpha ^2(-\sqrt{e^{2r}-1}+2\gamma sinhr)^2)i/2, \end{aligned}$$
(A.13)
$$\begin{aligned} V_{35}= & {} -V_{53}=(2\alpha \beta ^2 sinhr\sqrt{e^{2r}-1} -(-\beta ^2+\alpha ^2e^{r})\alpha \sqrt{e^{2r}-1}\nonumber \\&+\alpha (-\sqrt{e^{2r}-1}+2\gamma sinhr)(e^r-\gamma \sqrt{e^{2r}-1}))i/2, \end{aligned}$$
(A.14)
$$\begin{aligned} V_{36}= & {} V_{63}=2\alpha \beta ^2 sinhr\sqrt{e^{2r}-1}(n_{a}+1/2)\nonumber \\&+(-\beta ^2+\alpha ^2e^{r})\alpha \sqrt{e^{2r}-1}(n_{b}+1/2)\nonumber \\&-\alpha (-\sqrt{e^{2r}-1}+2\gamma sinhr)(e^r-\gamma \sqrt{e^{2r}-1})(n_{m}+1/2), \end{aligned}$$
(A.15)
$$\begin{aligned} V_{45}= & {} V_{54}=-V_{36}, \end{aligned}$$
(A.16)
$$\begin{aligned} V_{46}= & {} -V_{64}=V_{35} \end{aligned}$$
(A.17)

and

$$\begin{aligned} V_{56}=-V_{65}=(-\beta ^2(e^{2r}-1)+\alpha ^2(e^{2r}-1) +(e^r-\gamma \sqrt{e^{2r}-1})^2)i/2. \end{aligned}$$
(A.18)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazaheri, M., Jamasb, S. Pulsed entanglement and quantum steering in a three-mode electro-optomechanical system. Quantum Inf Process 19, 222 (2020). https://doi.org/10.1007/s11128-020-02721-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02721-6

Keywords

Navigation