Skip to main content
Log in

New entanglement-assisted quantum MDS codes with length \(n=\frac{q^2+1}{5}\)

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The entanglement-assisted stabilizer formalism can transform arbitrary classical linear codes into entanglement-assisted quantum error correcting codes. In this work, we construct some new entanglement-assisted quantum maximum distance separable codes with length \(n=\frac{q^2+1}{5}\) from cyclic codes. Compared with all the previously known parameters with the same length, all of them have flexible parameters and larger minimum distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shor, P.: Scheme for reducing decoherence in quantum memory. Phys. Rev. A 52(4), 2493–2496 (1995)

    ADS  Google Scholar 

  2. Calderbank, A., Shor, P.: Good quantum error-correcting codes exist. Phys. Rev. A 54(2), 1098–1105 (1996)

    ADS  Google Scholar 

  3. Calderbank, A., Rains, E., Shor, P., Sloane, N.: Quantum error correction via codes over GF(4). IEEE Trans. Inf. Theory 44(4), 1369–1387 (1998)

    MathSciNet  MATH  Google Scholar 

  4. Rains, E.: Nonbinary quantum codes. IEEE Trans. Inf. Theory 45(6), 1827–1832 (1999)

    MathSciNet  MATH  Google Scholar 

  5. Ashikhmin, A., Knill, E.: Nonbinary quantum stabilizer codes. IEEE Trans. Inf. Theory 47(7), 3065–3072 (2001)

    MathSciNet  MATH  Google Scholar 

  6. Li, R., Zuo, F., Liu, Y.: A study of skew asymmetric \(q^2\)-cyclotomic coset and its application. J. Air Force Eng. Univ. (Nat. Sci. Ed.) 12(1), 87–89 (2011). (in Chinese)

    Google Scholar 

  7. Li, R., Xu, G., Lu, L.: Decomposition of defining sets of BCH codes and its applications. J. Air Force Eng. Univ. (Nat. Sci. Ed.) 14(2), 86–89 (2013). (in Chinese)

    Google Scholar 

  8. Jin, L., Xing, C.: Euclidean and hermitian self-orthogonal algebraic geometry codes and their application to quantum codes. IEEE Trans. Inf. Theory 58(8), 5484–5489 (2012)

    MathSciNet  MATH  Google Scholar 

  9. Kai, X., Zhu, S., Li, P.: Constacyclic codes and some new quantum MDS codes. IEEE Trans. Inf. Theory 60(4), 2080–2086 (2014)

    MathSciNet  MATH  Google Scholar 

  10. Jin, L., Xing, C.: A construction of new quantum MDS codes. IEEE Trans. Inf. Theory 60(5), 2921–2925 (2014)

    MathSciNet  MATH  Google Scholar 

  11. Zhang, T., Ge, G.: Some new classes of quantum MDS codes from constacyclic codes. IEEE Trans. Inf. Theory 61(9), 5224–5228 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  12. Chen, X., Zhu, S., Kai, X.: Two classes of new optimal asymmetric quantum codes. Int. J. Theor. Phys. 57(6), 1829–1838 (2018)

    MathSciNet  MATH  Google Scholar 

  13. Brun, T., Devetak, I., Hsieh, M.: Correcting quantum errors with entanglement. Science 314(5798), 436–439 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  14. Lai, C., Brun, T.: Entanglement-assisted quantum error-correcting codes with imperfect ebits. Phys. Rev. A 86, 032319 (2012)

    ADS  Google Scholar 

  15. Lai, C., Brun, T., Wilde, M.: Duality in entanglement-assisted quantum error correction. IEEE Trans. Inf. Theory 59(6), 4020–4024 (2013)

    MathSciNet  MATH  Google Scholar 

  16. Guo, L., Li, R.: Linear Plotkin bound for entanglement-assisted quantum codes. Phys. Rev. A 87, 032309 (2013)

    ADS  Google Scholar 

  17. Lu, L., Li, R.: Entanglement-assisted quantum codes constructed from primitive quaternary BCH codes. Int. J. Quantum Inf. 12(3), 14500151–145001514 (2014)

    MathSciNet  MATH  Google Scholar 

  18. Li, R., Li, X., Guo, L.: On entanglement-assisted quantum codes achieving the entanglement-assisted Griesmer bound. Quantum Inf. Process. 14(12), 4427–4447 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  19. Qian, J., Zhang, L.: Entanglement-assisted quantum codes from arbitrary binary linear codes. Des. Codes Cryptogr. 77(1), 193–202 (2015)

    MathSciNet  MATH  Google Scholar 

  20. Grassl, M.: Entanglement-assisted quantum communication beating the quantum Singleton bound. AQIS, Taipei (2016)

    Google Scholar 

  21. Fan, J., Chen, H., Xu, J.: Construction of \(q\)-ary entanglement-assisted quantum MDS codes with minimum distance greater than \(q + 1\). Quantum Inf. Comput. 16(5&6), 0423–0434 (2016)

    MathSciNet  Google Scholar 

  22. Chen, J., Huang, Y., Feng, C., Chen, R.: Entanglement-assisted quantum MDS codes constructed from negacyclic codes. Quantum Inf. Process. 16(303), 1–22 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  23. Qian, J., Zhang, L.: On MDS linear complementary dual codes and entanglement-assisted quanum codes. Des. Codes Cryptogr. 86(7), 1565–1572 (2018)

    MathSciNet  MATH  Google Scholar 

  24. Guenda, K., Jitman, S., Gulliver, T.: Constructions of good entanglement-assisted quantum error correcting codes. Des. Codes Cryptogr. 86(1), 121–136 (2018)

    MathSciNet  MATH  Google Scholar 

  25. Lu, L., Li, R., Guo, L., Ma, Y., Liu, Y.: Entanglement-assisted quantum MDS codes from negacyclic codes. Quantum Inf. Process. 17(69), 1–23 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  26. Luo, G., Cao, X.: Two new families of entanglement-assisted quantum MDS codes from generalized Reed-Solomon codes. Quantum Inf. Process. 18(89), 1–12 (2019)

    MathSciNet  MATH  Google Scholar 

  27. Liu, X., Yu, L., Hu, P.: New entanglement-assisted quantum codes from k-Galois dual codes. Finite Fields Appl. 55, 21–32 (2019)

    MathSciNet  MATH  Google Scholar 

  28. Lu, L., Ma, W., Li, R., Ma, Y., Liu, Y., Cao, H.: Entanglement-assisted quantum MDS codes from constacyclic codes with large minimum distance. Finite Fields Their Appl. 53, 309–325 (2018)

    MathSciNet  MATH  Google Scholar 

  29. Chen, X., Zhu, S., Kai, X.: Entanglement-assisted quantum MDS codes constructed from constacyclic codes. Quantum Inf. Process. 17(273), 1–18 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  30. Qian, J., Zhang, L.: Constructions of new entanglement-assisted quantum MDS and almost MDS codes. Quantum Inf. Process. 18(71), 1–12 (2019)

    MathSciNet  MATH  Google Scholar 

  31. Wang, J., Li, R., Lv, J., Guo, G., Liu, Y.: Entanglement-assisted quantum error correction codes with length \(n = q^2 + 1\). Quantum Inf. Process. 18(292), 1–21 (2019)

    Google Scholar 

  32. MacWilliams, F., Sloane, N.: The Theory of Error Correcting Codes. North-Holland, Amsterdam (1977)

    MATH  Google Scholar 

  33. Wilde, M., Brun, T.: Optimal entanglement formulas for entanglement-assisted quantum coding. Phys. Rev. A 77(6), 064302 (2008)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for their helpful comments and a very meticulous reading of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research is supported by the National Natural Science Foundation of China (No. 61772168) and the Natural Science Foundation of Anhui Province (No. 2008085QA04).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, S., Jiang, W. & Chen, X. New entanglement-assisted quantum MDS codes with length \(n=\frac{q^2+1}{5}\). Quantum Inf Process 19, 211 (2020). https://doi.org/10.1007/s11128-020-02706-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02706-5

Keywords

Navigation