Skip to main content
Log in

The resource theory of coherence for quantum channels

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We define the quantum-incoherent relative entropy of coherence (\(\mathcal {QI}\) REC) of quantum channels in the framework of the resource theory by using the Choi–Jamiolkowski isomorphism. Coherence-breaking channels are introduced as free operations and their corresponding Choi states as free states. We also show the relationship between the coherence of channel and the quantum discord and find that basis-dependent quantum asymmetric discord can never be more than the \(\mathcal {QI}\) REC for any quantum channels. Also, we prove the \(\mathcal {QI}\) REC is decreasing for any divisible quantum-incoherent channel and we also claim it can be considered as the quantumness of quantum channels. Moreover, we demonstrate that for qubit channels, the relative entropy of coherence (REC) can be equivalent to the REC of their corresponding Choi states and the basis-dependent quantum symmetric discord can never exceed the coherence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Brandao, F.G.S.L., Gour, G.: Reversible framework for quantum resource theories. Phys. Rev. Lett. 115, 070503 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  2. Gour, G., Spekkens, R.W.: The resource theory of quantum reference frames: manipulations and monotones. New J. Phys. 10, 033023 (2008)

    Article  ADS  Google Scholar 

  3. Brandao, F.G.S.L., Horodecki, M., Oppenheim, J., Renes, J.M., Spekkens, R.W.: Resource theory of quantum states out of thermal equilibrium. Phys. Rev. Lett. 111, 250404 (2013)

    Article  ADS  Google Scholar 

  4. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  5. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Plenio, M.B., Virmani, S.: An introduction to entanglement theory. Quantum Inf. Comput. 7, 1 (2007)

    MathSciNet  MATH  Google Scholar 

  7. Bartlett, S.D., Rudolph, T., Spekkens, R.W.: Reference frames, superselection rules, and quantum information. Rev. Mod. Phys. 79, 555 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Gour, G., Muller, M.P., Narasimhachar, V., Spekkens, R.W., Halpern, N.Y.: The resource theory of informational nonequilibrium in thermodynamics. Phys. Rep. 583, 1 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V., Wehner, S.: Bell nonlocality. Rev. Mod. Phys. 86, 419 (2014)

    Article  ADS  Google Scholar 

  10. Rivas, Á., Huelga, S.F., Plenio, M.B.: Quantum non-Markovianity: characterization, quantification and detection. Rep. Prog. Phys. 77, 094001 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  11. Coles, P.J., Metodiev, E.M., Lütkenhaus, N.: Numerical approach for unstructured quantum key distribution. Nat. Commun. 7, 11712 (2016)

    Article  ADS  Google Scholar 

  12. Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photonics 5, 222 (2011)

    Article  ADS  Google Scholar 

  13. Yuan, X., Zhou, H., Cao, Z., Ma, X.: Intrinsic randomness as a measure of quantum coherence. Phys. Rev. A 92, 022124 (2015)

    Article  ADS  Google Scholar 

  14. Streltsov, A., Adesso, G., Plenio, M.B.: Colloquium: quantum coherence as a resource. Rev. Mod. Phys. 89, 041003 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  15. Chin, S.: Coherence number as a discrete quantum resource. Phys. Rev. A 92, 042336 (2017)

    Article  ADS  Google Scholar 

  16. Winter, A., Yang, D.: Operational resource theory of coherence. Phys. Rev. Lett. 116, 120404 (2016)

    Article  ADS  Google Scholar 

  17. Chen, J.-J., Cui, J., Zhang, Y.-R., Fan, H.: Coherence susceptibility as a probe of quantum phase transitions. Phys. Rev. A 94, 022112 (2016)

    Article  ADS  Google Scholar 

  18. Horodecki, M., Oppenheim, J.: (Quantumness in the context of) resource theories. Int. J. Mod. Phys. B 27, 1345019 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Gour, G.: Quantum resource theories in the single-shot regime. Phys. Rev. A 95, 062314 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  20. Liu, Z.-W., Hu, X., Lloyd, S.: Resource destroying maps. Phys. Rev. Lett. 118, 060502 (2017)

    Article  ADS  Google Scholar 

  21. Sparaciari, C., del Rio, L., Scandolo, C.M., Faist, P., Oppenheim, J.: The first law of general quantum resource theories. arXiv:1806.04937 [quant-ph]

  22. Chitambar, E., Gour, G.: Quantum resource theories. Phys. Rev. Mod. 91, 025001 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  23. Chitambar, E., Hsieh, M.-H.: Relating the resource theories of entanglement and quantum coherence. Phys. Rev. Lett. 117, 020402 (2016)

    Article  ADS  Google Scholar 

  24. Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  25. Chitambar, E., Streltsov, A., Rana, S., Bera, M.N., Adesso, G., Lewenstein, M.: Assisted distillation of quantum coherence. Phys. Rev. Lett. 116, 070402 (2016)

    Article  ADS  Google Scholar 

  26. Xi, Z., Li, Y., Fan, H.: Quantum coherence and correlations in quantum system. Sci. Rep. 9, 10922 (2015)

    Article  Google Scholar 

  27. Ma, J., Yadin, B., Girolami, D., Vedral, V., Gu, M.: Converting coherence to quantum correlations. Phys. Rev. Lett. 116, 160407 (2016)

    Article  ADS  Google Scholar 

  28. Mukhopadhyay, C., Sazim, S., Pati, A.K.: Coherence makes quantum systems ‘magical’. J. Phys. A: Math. Theor. 51(41), 414006 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang, X.-L., Yue, Q.-L., Ya, C.-H., Gao, F., Qin, S.-J.: Relating quantum coherence and correlations with entropy-based measures. Sci. Rep. 7, 12122 (2017)

    Article  ADS  Google Scholar 

  30. Shahbeigi, F., Akhtarshenas, S.J.: Quantumness of quantum channels. Phys. Rev. A 98, 042313 (2018)

    Article  ADS  Google Scholar 

  31. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  32. Datta, C., Sazim, S., Pati, A.K., Agrawal, P.: Coherence of quantum channels. Ann. Phys. 397, 243–258 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Bu, K., Swati, Singh, U., Wu, J.: Coherence-breaking channels and coherence sudden death. Phys. Rev. A 94, 052335 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  34. Streltsov, A., Rana, S., Bera, M.N., Lewenstein, M.: Towards resource theory of coherence in distributed scenarios. Phys. Rev. X 7, 011024 (2017)

    Google Scholar 

  35. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  MATH  Google Scholar 

  36. Luo, S.L.: Using measurement-induced disturbance to characterize correlations as classical or quantum. Phys. Rev. A 77, 022301 (2008)

    Article  ADS  Google Scholar 

  37. Rulli, C.C., Sarandy, M.S.: Global quantum discord in multipartite systems. Phys. Rev. A 84, 042109 (2011)

    Article  ADS  Google Scholar 

  38. Horodecki, M., Shor, P.W., Ruskai, M.B.: Entanglement breaking channels. Rev. Math. Phys. 15, 629 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  39. Vedral, V., Plenio, M.B.: Entanglement measures and purification procedures. Phys. Rev. A 57, 1619 (1998)

    Article  ADS  Google Scholar 

  40. Shao, L.-H., Xi, Z., Fan, H., Li, Y.: Fidelity and trace-norm distances for quantifying coherence. Phys. Rev. A 91, 042120 (2015)

    Article  ADS  Google Scholar 

  41. Bai, Z., Du, S.: Maximally coherent states. Quantum Inf. Comput. 15, 1355 (2015)

    MathSciNet  Google Scholar 

  42. Mani, A., Karimipour, V.: Cohering and decohering power of quantum channels. Phys. Rev. A 92, 032331 (2015)

    Article  ADS  Google Scholar 

  43. Du, S., Bai, Z., Qi, X.: Coherence measures and optimal conversion for coherent states. Quantum Inf. Comput. 15, 1307 (2015)

    MathSciNet  Google Scholar 

  44. Aberg, J.: Quantifying superposition. arXiv:quant-ph/0612146

  45. Chitambar, E., Gour, G.: Comparison of incoherent operations and measures of coherence. Phys. Rev. A 94, 052336 (2016)

    Article  ADS  Google Scholar 

  46. Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Modi, K., Paterek, T., Son, W., Vedral, V., Williamson, M.: Unified view of quantum and classical correlations. Phys. Rev. Lett. 104, 080501 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  48. King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Trans. Inf. Theory 47, 192–209 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  49. Ruskai, M.B., Szarek, S., Werner, E.: An analysis of completely-positive trace-preserving maps on M2. Linear Algebra Appl. 347, 159 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  50. Smirne, A., Kolodynski, J., Huelga, S.F., Demkowicz-Dobrzanski, R.: Ultimate precision limits for noisy frequency estimation. Phys. Rev. Lett. 116(12), 120801 (2016)

    Article  ADS  Google Scholar 

  51. Lankinen, J., Lyyra, H., Sokolov, B., Teittinen, J., Ziaei, B., Maniscalco, S.: Complete positivity, finite-temperature effects, and additivity of noise for time-local qubit dynamics. Phys. Rev. A 93(5), 052103 (2016)

    Article  ADS  Google Scholar 

  52. Tabesh, F.T., Karpat, G., Maniscalco, S., Salimi, S., Khorashad, A.S.: Time-invariant discord: high temperature limit and initial environmental correlations. Quantum Inf. Process. 17, 87 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  54. Luczka, J.: Spin in contact with thermostat: exact reduced dynamics. Phys. A: Stat. Mech. Appl. 167, 919–934 (1990)

    Article  MathSciNet  Google Scholar 

  55. Palma, G.M., Suominen, K.-A., Ekert, A.-K.: Quantum computers and dissipation. Proc. R. Soc. Lond. Ser. A 452, 567–584 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Reina, J.H., Quiroga, L., Johnson, N.F.: Decoherence of quantum registers. Phys. Rev. A 65, 032326 (2002)

    Article  ADS  Google Scholar 

  57. Haikka, P., Johnson, T.H., Maniscalco, S.: Non-Markovianity of local dephasing channels and time-invariant discord. Phys. Rev. A 87, 010103(R) (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Salimi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamin, F.H., Tabesh, F.T., Salimi, S. et al. The resource theory of coherence for quantum channels. Quantum Inf Process 19, 210 (2020). https://doi.org/10.1007/s11128-020-02702-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02702-9

Keywords

Navigation