Skip to main content
Log in

Hybrid Helmholtz machines: a gate-based quantum circuit implementation

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum machine learning has the potential to overcome problems that current classical machine learning algorithms face, such as large data requirements or long learning times. Sampling is one of the aspects of classical machine learning that might benefit from quantum machine learning, as quantum computers intrinsically excel at sampling. Current hybrid quantum-classical implementations provide ways to already use near-term quantum computers for practical applications. By expanding the horizon on hybrid quantum-classical approaches, this work proposes the first implementation of a gated quantum-classical hybrid Helmholtz machine, a gate-based quantum circuit approximation of a neural network for unsupervised tasks. Our approach focuses on parameterized shallow quantum circuits and effectively implements an approximate Bayesian network, overcoming the exponential complexity of exact networks. In addition, a new balanced cost function is introduced, preventing the need of millions of training samples. Using a bars and stripes data set, the model, implemented on the Quantum Inspire platform, is shown to outperform classical Helmholtz machines in terms of the Kullback–Leibler divergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Anschuetz, E., Olson, J., Aspuru-Guzik, A., Cao, Y.: Variational quantum factoring. In: Feld, S., Linnhoff-Popien, C. (eds.) Quantum Technology and Optimization Problems, pp. 74–85. Springer, Cham (2019)

    Chapter  Google Scholar 

  2. Badea Stroie, L.M.: Predicting consumer behavior with artificial neural networks. Procedia Econ Finance 15, 238–246 (2014). https://doi.org/10.1016/S2212-5671(14)00492-4

    Article  Google Scholar 

  3. Benedetti, M., Garcia-Pintos, D., Perdomo, Leyton-Ortega, V., Nam, Y., Perdomo-Ortiz, A.: A generative modeling approach for benchmarking and training shallow quantum circuits. npj Quantum Inf 5, 45 (2019). https://doi.org/10.1038/s41534-019-0157-8

  4. Benedetti, M., Realpe Gomez, J., Perdomo-Ortiz, A.: Quantum-assisted helmholtz machines: a quantum-classical deep learning framework for industrial datasets in near-term devices. Quantum Sci Technol (2018). https://doi.org/10.1088/2058-9565/aabd98

    Article  Google Scholar 

  5. Berry, M.J., Linoff, G.: Data Mining Techniques: For Marketing, Sales, and Customer Support. Wiley, New York (1997)

    Google Scholar 

  6. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press Inc, New York (1995)

    MATH  Google Scholar 

  7. Clark, J., Koprinska, I., Poon, J.: A neural network based approach to automated e-mail classification. In: Proceedings IEEE/WIC International Conference on Web Intelligence (WI 2003), pp. 702–705 (2003). https://doi.org/10.1109/WI.2003.1241300

  8. Coles, P.J., Eidenbenz, S., Pakin, S., Adedoyin, A., Ambrosiano, J., Anisimov, P., Casper, W., Chennupati, G., Coffrin, C., Djidjev, H., et al.: Quantum algorithm implementations for beginners. arXiv:1804.03719 [quant-ph] (2018)

  9. Hinton, G., Dayan, P., Frey, B., Neal, R.: The “wake-sleep” algorithm for unsupervised neural networks. Science 268(5214), 1158–1161 (1995). https://doi.org/10.1126/science.7761831

    Article  ADS  Google Scholar 

  10. Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse ising model. Phys. Rev. E 58, 5355–5363 (1998). https://doi.org/10.1103/PhysRevE.58.5355

    Article  ADS  Google Scholar 

  11. Kirby, K.G.: A tutorial on helmholtz machines (2006). https://www.nku.edu/~kirby/docs/HelmholtzTutorialKoeln.pdf. Accessed 20 Apr 2020

  12. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann Math Stat 22(1), 79–86 (1951). https://doi.org/10.1214/aoms/1177729694

    Article  MathSciNet  MATH  Google Scholar 

  13. Lawrence, S., Giles, C.L., Tsoi, A.C., Back, A.D.: Face recognition: a convolutional neural-network approach. IEEE Trans Neural Netw 8(1), 98–113 (1997). https://doi.org/10.1109/72.554195

    Article  Google Scholar 

  14. Low, G.H., Yoder, T.J., Chuang, I.L.: Quantum inference on Bayesian networks. Phys Rev A (2014). https://doi.org/10.1103/PhysRevA.89.062315

    Article  Google Scholar 

  15. MacKay, D.J.C.: Information Theory, Inference, and Learning Algorithms, vol. 6. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  16. McClean, J.R., Romero, J., Babbush, R., Aspuru-Guzik, A.: The theory of variational hybrid quantum-classical algorithms. New J. Phys. 18(2), 023023 (2016). https://doi.org/10.1088/1367-2630/18/2/023023

    Article  ADS  Google Scholar 

  17. Neumann, N.M.P., Phillipson, F., Versluis, R.: Machine learning in the quantum era. Digitale Welt 3(2), 24–29 (2019). https://doi.org/10.1007/s42354-019-0164-0

    Article  Google Scholar 

  18. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2008)

    MATH  Google Scholar 

  19. Nobuyuki, M., Haruhiko, N., Isokawa, T.: Qubit neural network: its performance and applications. Neural Process. Lett. 3(22), 277–290 (2005). https://doi.org/10.4018/978-1-60566-214-5.ch013

    Article  Google Scholar 

  20. O’Malley, P.J.J., Babbush, R., Kivlichan, I.D., Romero, J., McClean, J.R., Barends, R., Kelly, J., Roushan, P., Tranter, A., Ding, N., Campbell, B., Chen, Y., Chen, Z., Chiaro, B., Dunsworth, A., Fowler, A.G., Jeffrey, E., Lucero, E., Megrant, A., Mutus, J.Y., Neeley, M., Neill, C., Quintana, C., Sank, D., Vainsencher, A., Wenner, J., White, T.C., Coveney, P.V., Love, P.J., Neven, H., Aspuru-Guzik, A., Martinis, J.M.: Scalable quantum simulation of molecular energies. Phys. Rev. X 6, 031007 (2016). https://doi.org/10.1103/PhysRevX.6.031007

    Article  Google Scholar 

  21. Perdomo-Ortiz, A., Benedetti, M., Realpe-Gómez, J., Biswas, R.: Opportunities and challenges for quantum-assisted machine learning in near-term quantum computers. Quantum Sci Technol 3(3), 030502 (2018). https://doi.org/10.1088/2058-9565/aab859

    Article  ADS  Google Scholar 

  22. Peruzzo, A., McClean, J., Shadbolt, P., Yung, M.H., Zhou, X.Q., Love, P.J., Aspuru-Guzik, A., O’Brien, J.L.: A variational eigenvalue solver on a photonic quantum processor. Nat Commun (2014). https://doi.org/10.1038/ncomms5213

    Article  Google Scholar 

  23. Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018). https://doi.org/10.22331/q-2018-08-06-79

    Article  Google Scholar 

  24. QuTech: (2019). https://www.quantum-inspire.com/. Accessed 13 May 2019

  25. Rebentrost, P., Bromley, T.R., Weedbrook, C., Lloyd, S.: Quantum hopfield neural network. Phys. Rev. A 98, 042308 (2018). https://doi.org/10.1103/PhysRevA.98.042308

    Article  ADS  Google Scholar 

  26. Romero, J., Babbush, R., McClean, J.R., Hempel, C., Love, P.J., Aspuru-Guzik, A.: Strategies for quantum computing molecular energies using the unitary coupled cluster ansatz. Quantum Sci. Technol. 4(1), 014008 (2018). https://doi.org/10.1088/2058-9565/aad3e4

    Article  ADS  Google Scholar 

  27. Roth, D.: On the hardness of approximate reasoning. Artif. Intell. 82(1–2), 273–302 (1996)

    Article  MathSciNet  Google Scholar 

  28. Schuld, M., Sinayskiy, I., Petruccione, F.: An introduction to quantum machine learning. Contemp. Phys. 56(2), 172–185 (2015). https://doi.org/10.1080/00107514.2014.964942

    Article  ADS  MATH  Google Scholar 

  29. Schuld, M., Sinayskiy, I., Petruccione, F.: Prediction by linear regression on a quantum computer. Phys. Rev. A 94, 022342 (2016). https://doi.org/10.1103/PhysRevA.94.022342

    Article  ADS  Google Scholar 

  30. Wiebe, N., Kapoor, A., Svore, K.M.: Quantum deep learning. arXiv:1412.3489 [quant-ph] (2014)

  31. Yoo, S., Bang, J., Lee, C., Lee, J.: A quantum speedup in machine learning: finding a N-bit Boolean function for a classification. New J. Phys. 16(10), 103014 (2014). https://doi.org/10.1088/1367-2630/16/10/103014

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niels M. P. Neumann.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Dam, T.J., Neumann, N.M.P., Phillipson, F. et al. Hybrid Helmholtz machines: a gate-based quantum circuit implementation. Quantum Inf Process 19, 174 (2020). https://doi.org/10.1007/s11128-020-02660-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02660-2

Keywords

Navigation