Skip to main content
Log in

Tomographic entanglement indicators in multipartite systems

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We assess the performance of an entanglement indicator which can be obtained directly from tomograms, avoiding state reconstruction procedures. In earlier work, we have examined this tomographic entanglement indicator, and a variant obtained from it, in the context of continuous variable systems. It has been shown that, in multipartite systems of radiation fields, these indicators fare as well as standard measures of entanglement. In this paper we assess these indicators in the case of two generic hybrid quantum systems, the double Jaynes–Cummings model and the double Tavis–Cummings model using, for purposes of comparison, the quantum mutual information as a standard reference for both quantum correlations and entanglement. The dynamics of entanglement is investigated in both models over a sufficiently long time interval. We establish that the tomographic indicator provides a good estimate of the extent of entanglement both in the atomic subsystems and in the field subsystems. An indicator obtained from the tomographic indicator as an approximation, however, does not capture the entanglement properties of atomic subsystems, although it is useful for field subsystems. Our results are inferred from numerical calculations based on the two models, simulations of relevant equivalent circuits in both cases, and experiments performed on the IBM computing platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yu, T., Eberly, J.: Sudden death of entanglement. Science 323, 598 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  2. Man, Z.X., Xia, Y.J., An, N.B.: Entanglement dynamics for the double Tavis–Cummings model. Eur. Phys. J. D. 53, 229 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  3. Vogel, W., Filho, RLdM: Nonlinear Jaynes–Cummings dynamics of a trapped ion. Phys. Rev. A 52, 4214 (1995)

    Article  ADS  Google Scholar 

  4. Deppe, F., Mariantoni, M., Menzel, E., Marx, A., Saito, S., Kakuyanagi, K., Tanaka, H., Meno, T., Semba, K., Takayanagi, H., et al.: Two-photon probe of the Jaynes–Cummings model and controlled symmetry breaking in circuit QED. Nat. Phys. 4, 686 (2008)

    Article  Google Scholar 

  5. Retzker, A., Solano, E., Reznik, B.: Tavis–Cummings model and collective multiqubit entanglement in trapped ions. Phys. Rev. A 75, 022312 (2007)

    Article  ADS  Google Scholar 

  6. Laha, P., Sudarsan, B., Lakshmibala, S., Balakrishnan, V.: Entanglement dynamics in a model tripartite quantum system. Int. J. Theor. Phys. 55, 4044 (2016)

    Article  MathSciNet  Google Scholar 

  7. Laha, P., Lakshmibala, S., Balakrishnan, V.: Nonclassical effects in optomechanics: dynamics and collapse of entanglement. J. Opt. Soc. Am. B 36, 575 (2019)

    Article  ADS  Google Scholar 

  8. Li, X., Shang, J., Ng, H.K., Englert, B.G.: Optimal error intervals for properties of the quantum state. Phys. Rev. A 94, 062112 (2016)

    Article  ADS  Google Scholar 

  9. Rohith, M., Sudheesh, C.: Signatures of entanglement in an optical tomogram. J. Opt. Soc. Am. B 33, 126 (2016)

    Article  ADS  Google Scholar 

  10. Sharmila, B., Saumitran, K., Lakshmibala, S., Balakrishnan, V.: Signatures of nonclassical effects in optical tomograms. J. Phys. B: At. Mol. Opt. 50, 045501 (2017)

    Article  ADS  Google Scholar 

  11. Sharmila, B., Lakshmibala, S., Balakrishnan, V.: Estimation of entanglement in bipartite systems directly from tomograms. Quantum Inf. Process. 18, 236 (2019)

    Article  ADS  Google Scholar 

  12. Wang, Y., Li, Y., Yin, Zq, Zeng, B.: 16-qubit IBM universal quantum computer can be fully entangled. NPJ Quantum Inf. 4, 46 (2018)

    Article  ADS  Google Scholar 

  13. Mooney, G.J., Hill, C.D., Hollenberg, L.C.: Entanglement in a 20-qubit superconducting quantum computer. Sci. Rep. 9, 13465 (2019)

    Article  ADS  Google Scholar 

  14. Behera, B.K., Seth, S., Das, A., Panigrahi, P.K.: Demonstration of entanglement purification and swapping protocol to design quantum repeater in IBM quantum computer. Quantum Inf. Process. 18(4), 108 (2019)

    Article  ADS  Google Scholar 

  15. Satyajit, S., Srinivasan, K., Behera, B.K., Panigrahi, P.K.: Nondestructive discrimination of a new family of highly entangled states in IBM quantum computer. Quantum Inf. Process. 17(9), 212 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  16. Deffner, S.: Demonstration of entanglement assisted invariance on IBM’s quantum experience. Heliyon 3(11), e00444 (2017)

    Article  Google Scholar 

  17. Lamata, L., Parra-Rodriguez, A., Sanz, M., Solano, E.: Digital-analog quantum simulations with superconducting circuits. Adv. Phys. X 3, 1457981 (2018)

    Google Scholar 

  18. IBM Q: Documentation and support. https://quantum-computing.ibm.com/support

  19. Qiskit: An Open-Source Framework for Quantum Computing. https://qiskit.org

  20. Vogel, K., Risken, H.: Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase. Phys. Rev. A 40, 2847 (1989)

    Article  ADS  Google Scholar 

  21. Ibort, A., Man’ko, V.I., Marmo, G., Simoni, A., Ventriglia, F.: An introduction to the tomographic picture of quantum mechanics. Phys. Scr. 79, 065013 (2009)

    Article  ADS  Google Scholar 

  22. Lvovsky, A.I., Raymer, M.G.: Continuous-variable optical quantum-state tomography. Rev. Mod. Phys. 81, 299 (2009)

    Article  ADS  Google Scholar 

  23. Thew, R.T., Nemoto, K., White, A.G., Munro, W.J.: Qudit quantum-state tomography. Phys. Rev. A 66, 012303 (2002)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We acknowledge the use of the IBM Q for this work. The views expressed are those of the authors and do not reflect the official policy or position of IBM or the IBM Q team. We have also used the Department Computing Facility, Department of Physics, IIT Madras.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Sharmila.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharmila, B., Lakshmibala, S. & Balakrishnan, V. Tomographic entanglement indicators in multipartite systems. Quantum Inf Process 19, 127 (2020). https://doi.org/10.1007/s11128-020-02625-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02625-5

Keywords

Navigation