Skip to main content
Log in

On the hardnesses of several quantum decoding problems

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We classify the time complexities of three decoding problems for quantum stabilizer codes: quantum bounded distance decoding (QBDD), quantum maximum likelihood decoding (QMLD), and quantum minimum error probability decoding (QMEPD). For QBDD, we show that it is NP-hard based on Fujita’s result, and cover the gap of full row rank of check matrices, like what Berlekamp, McEliece, and Tilborg suggested in 1978. Then, we give some insight into the quantum decoding problems to clarify that the degeneracy property is implicitly embedded in any decoding algorithm, independent of the typical definition of degenerate codes. Then, over the depolarizing channel model, we show that QMLD and QMEPD are NP-hard. The NP-hardnesses of these decoding problems indicate that decoding general stabilizer codes is extremely difficult, strengthening the foundation of quantum code-based cryptography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berlekamp, E., McEliece, R., van Tilborg, H.: On the inherent intractability of certain coding problems. IEEE Trans. Inf. Theory 24, 384–386 (1978)

    Article  MathSciNet  Google Scholar 

  2. Sipser, M.: Introduction to the Theory of Computation. Thomson Course Technology, Boston (2006)

    MATH  Google Scholar 

  3. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. Nasa dsn progress report 42-44, NASA (1978)

  4. Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.): Post-Quantum Cryptography. Springer, Berlin (2009)

    MATH  Google Scholar 

  5. Bernstein, D.J., Lange, T., Peters, C.: Wild McEliece. In: Proceedings of Selected Areas in Cryptography, pp. 143–158 (2010)

  6. Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction and orthogonal geometry. Phys. Rev. Lett. 78, 405 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  7. Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction via codes over GF(4). IEEE Trans. Inf. Theory 44, 1369–1387 (1998)

    Article  MathSciNet  Google Scholar 

  8. Gottesman, D.: Stabilizer Codes and Quantum Error Correction. Ph.D. thesis, California Institute of Technology (1997)

  9. Poulin, D., Chung, Y.: On the iterative decoding of sparse quantum codes. Quantum Inf. Comput. 8, 987–1000 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Hsieh, M.H., Le Gall, F.: NP-hardness of decoding quantum error-correction codes. Phys. Rev. A 83, 052331 (2011)

    Article  ADS  Google Scholar 

  11. Fujita, H.: Quantum McEliece public-key cryptosystem. Quantum Inf. Comput. 12, 0181–0202 (2012)

    MathSciNet  MATH  Google Scholar 

  12. Cohen, G., Encheva, S., Litsyn, S.: On binary constructions of quantum codes. IEEE Trans. Inf. Theory 45, 2495–2498 (1999)

    Article  MathSciNet  Google Scholar 

  13. Bennett, C.H., Shor, P.W.: Quantum information theory. IEEE Trans. Inf. Theory 44, 2724–2742 (1998)

    Article  MathSciNet  Google Scholar 

  14. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge Univ. Press, Cambridge (2000)

    MATH  Google Scholar 

  15. Kuo, K.Y., Lu, C.C.: A further study on the encoding complexity of quantum stabilizer codes. In: Proceedings of 2010 International Symposium on Information Theory and its Applications, pp. 1041–1044 (2010)

  16. MacWilliams, F., Sloane, N.: The Theory of Error-Correcting Codes. North-Holland Publishing Company, Amsterdam (1978)

    MATH  Google Scholar 

  17. Pretzel, O.: Codes and Algebraic Curves. Oxford University Press, Oxford (1998)

    MATH  Google Scholar 

  18. Stichtenoth, H.: Algebraic Function Fields and Codes, 2nd edn. Springer, Berlin (2008)

    MATH  Google Scholar 

  19. Herstein, I.N.: Abstract Algebra, 3rd edn. Wiley, Hoboken (1996)

    MATH  Google Scholar 

  20. Grassl, M., Beth, T.: Quantum BCH codes. In: Proceedings X. International Symposium on Theoretical Electrical Engineering, Magdeburg, pp. 207–212 (1999)

  21. Hamada, M.: Concatenated quantum codes constructible in polynomial time: efficient decoding and error correction. IEEE Trans. Inf. Theory 54, 5689–5704 (2008)

    Article  MathSciNet  Google Scholar 

  22. Smith, G.: Private classical capacity with a symmetric side channel and its application to quantum cryptography. Phys. Rev. A 78, 022306 (2008)

    Article  ADS  Google Scholar 

  23. Chudnovsky, D.V., Chudnovsky, G.V.: Approximations and complex multiplication according to Ramanujan. In: Ramanujan Revisited, pp. 375–472. Academic Press Inc., Boston (1988)

  24. Fürer, M.: Faster integer multiplication. In: Proceedings of the 39th Annual ACM Symposium on Theory of Computing, pp. 55–67 (2007)

Download references

Funding

This work was supported by the Ministry of Science and Technology, Taiwan, under Contract MOST 101-2221-E-007-096-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kao-Yueh Kuo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the Ministry of Science and Technology, Taiwan, under Contract MOST 101-2221-E-007-096-MY3. Part of this work was presented at the 2012 International Symposium on Information Theory and its Applications (ISITA 2012), Hawaii, USA, October 28–31, 2012. This work has an arXiv version (arxiv:1306.5173).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuo, KY., Lu, CC. On the hardnesses of several quantum decoding problems. Quantum Inf Process 19, 123 (2020). https://doi.org/10.1007/s11128-020-02622-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02622-8

Keywords

Navigation