Skip to main content
Log in

Experimental realization of quantum teleportation using coined quantum walks

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The goal of teleportation is to transfer the state of one particle to another particle. In coined quantum walks, conditional shift operators can introduce entanglement between position space and coin space. This entanglement resource can be used as a quantum channel for teleportation, as proposed by Wang et al. (Quantum Inf Process 16:221, 2017). Here, we demonstrate the implementation of quantum teleportation using quantum walks on a five-qubit quantum computer and a 32-qubit simulator provided by IBM quantum experience beta platform. We show the teleportation of single-qubit, two-qubit and three-qubit quantum states with circuit implementation on the quantum devices. The teleportation of Bell, W and GHZ states has also been demonstrated as special cases of the above states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Horodecki, M., Horodecki, P., Horodecki, R.: General teleportation channel, singlet fraction, and qua-sidistillation. Phys. Rev. A 60, 1888–1898 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  2. Banaszek, K.: Optimal quantum teleportation with an arbitrary pure state. Phys. Rev. A 62, 024301 (2000)

    Article  ADS  Google Scholar 

  3. Albeverio, S., Fei, S.-M., Yang, W.-L.: Optimal teleportation based on bell measurements. Phys. Rev. A 66, 012301 (2002)

    Article  ADS  Google Scholar 

  4. Oh, S., Lee, S., Lee, H.W.: Fidelity of quantum teleportation through noisy channels. Phys. Rev. A 66, 022316 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  5. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  6. Venegas-Andraca, S.E.: Quantum walks: a comprehensive review. Quantum Inf. Process. 11, 1015 (2012)

    Article  MathSciNet  Google Scholar 

  7. Ambainis A.: Quantum random walks—new method for designing quantum algorithms. In: Geffert, V., Karhumaki, J., Bertoni, A., Preneel, B., Navrat, P., Bielikova, M. (eds.) SOFSEM 2008: Theory and Practice of Computer Science. SOFSEM: Lecture Notes in Computer Science, vol. 4910. Springer, Berlin, Heidelberg (2008)

  8. Wang, Y., Shang, Y., Xue, P.: Generalized teleportation by quantum walks. Quantum Inf. Process. 16, 221 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  9. Ye, M., Zhang, Y., Guo, G.: Quantum entanglement and quantum operation. Sci. China Ser. G-Phys. Mech. Astron. 51, 14 (2008)

    Article  ADS  Google Scholar 

  10. de Oliveira, J.L., Oliveira, D.S., Ramos, R.V.: Entanglement measure for pure six-qubit quantum states. Quantum Inf. Process. 11, 255 (2012)

    Article  MathSciNet  Google Scholar 

  11. Ma, X.S., Qiao, Y., Zhao, G.X., Wang, A.M.: Tripartite entanglement of electron spins of noninteracting electron gases. Quantum Inf. Process. 12, 1807 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  12. IBM Quantum Experience. https://www.research.ibm.com/ibm-q/

  13. Behera, B.K., Banerjee, A., Panigrahi, P.K.: Experimental realization of quantum cheque using a five-qubit quantum computer. Quantum Inf. Process. 16, 312 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  14. Ghosh, D., Agarwal, P., Pandey, P., Behera, B.K., Panigrahi, P.K.: Automated Error Correction in IBM Quantum Computer and Explicit Generalization. Quantum Inf. Process. 17, 153 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  15. Gangopadhyay, S., Manabputra, Behera, B.K., Panigrahi, P.K.: Generalization and demonstration of an entanglement based Deutsch-Jozsa like algorithm using a 5-qubit quantum computer. Quantum Inf. Process. 17, 160 (2018)

  16. Vishnu, P.K., Joy, D., Behera, B.K., Panigrahi, P.K.: Experimental demonstration of non-local controlled-unitary quantum gates using a five-qubit quantum computer. Quantum Inf. Process. 17, 274 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  17. Satyajit, S., Srinivasan, K., Behera, B.K., Panigrahi, P.K.: Nondestructive discrimination of a new family of highly entangled states in IBM quantum computer. Quantum Inf. Process. 17, 212 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  18. Behera, B.K., Seth, S., Das, A., Panigrahi, P.K.: Demonstration of entanglement purification and swapping protocol to design quantum repeater in IBM quantum computer. Quantum Inf. Process. 18, 108 (2019)

    Article  ADS  Google Scholar 

  19. Shi, R.H., Zhong, H.: Multi-party quantum key agreement with bell states and bell measurements. Quantum Inf. Process. 12, 921 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  20. Wojcik, A., Grudka, A., Chhajlany, R.W.: Generation of inequivalent generalized Bell bases. Quantum Inf. Process. 2, 201 (2003)

    Article  MathSciNet  Google Scholar 

  21. Guo, Y., Zhao, Z., Wang, Y., Wang, P., Huang, D., Lee, M.H.: On implementing nondestructive triplet Toffoli gate with entanglement swapping operations via the GHZ state analysis. Quantum Inf. Process. 13, 2039 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  22. Gong, L., Tian, C., Li, J., Zou, X.: Quantum network dialogue protocol based on continuous-variable GHZ states. Quantum Inf. Process. 17, 331 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  23. Liao, C.H., Yang, C.W., Hwang, T.: Dynamic quantum secret sharing protocol based on GHZ state. Quantum Inf. Process. 13, 1907 (2014)

    Article  ADS  Google Scholar 

  24. Bai, C.M., Li, Z.H., Xu, T.T., Li, Y.M.: Quantum secret sharing using the d-dimensional GHZ state. Quantum Inf. Process. 16, 59 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  25. Hu, J.R., Lin, Q.: W state generation by adding independent single photons. Quantum Inf. Process. 14, 2847 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  26. Ji, Q., Liu, Y., Yin, X., Liu, X., Zhang, Z.: Quantum operation sharing with symmetric and asymmetric W states. Quantum Inf. Process. 12, 2453 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  27. Wu, L.A., Byrd, M.S.: Self-protected quantum algorithms based on quantum state tomography. Quantum Inf. Process. 8, 1 (2009)

    Article  MathSciNet  Google Scholar 

  28. Swain, M., Rai, A., Behera, B.K., Panigrahi, P.K.: Experimental demonstration of the violations of Mermin’s and Svetlichny’s inequalities for W and GHZ states. Quantum Inf. Process. 18, 218 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

YC and VD acknowledge the hospitality provided by IISER Kolkata. BKB is financially supported by DST Inspire Fellowship. We thank Wang, Shang and Xue for their original contribution to the concept of using quantum walks for teleportation. We are extremely grateful to IBM and IBM QE project. The discussions and opinions developed in this paper are only those of the authors and do not reflect the opinions of IBM or IBM QE team.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bikash K. Behera.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatterjee, Y., Devrari, V., Behera, B.K. et al. Experimental realization of quantum teleportation using coined quantum walks. Quantum Inf Process 19, 31 (2020). https://doi.org/10.1007/s11128-019-2527-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2527-8

Keywords

Navigation