Skip to main content
Log in

Information hiding method based on quantum image by using Bell states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we propose a novel information hiding method based on the NEQR quantum image and Bell states. We hide the secret information in the NEQR quantum image. The NEQR quantum image and the secret information are transferred to the recipient by using the quantum teleportation scheme. The recipient not only gets the secret information, but also holds the quantum image after one measurement. Our method can extract \( m \) secret bits after one measurement, while LSQb method can extract one secret bit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nielson, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, 10th Anniversary edition published, Cambridge (2010)

  2. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of 35th Annual Symposium on Foundations Computer Science, pp. 124–134 (1994)

  3. Grove, L.K.: Quantum computers can search arbitrarily large databases by a single query. Phys. Rev. Lett. 79(23), 4709–4712 (1997)

    Article  ADS  Google Scholar 

  4. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21, 120–126 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  5. Liu, L., Tang, G.M., Sun, Y.F., Yan, S.F.: Quantum steganography for multi-party covert communication. Int. J. Theory Phys. 55, 191–201 (2016)

    Article  MATH  Google Scholar 

  6. DiVincenzo, D.P., Leung, D.W., Terhal, B.M.: Quantum data hiding. IEEE Trans. Inf. Theory 48(3), 1–19 (2001)

    MathSciNet  MATH  Google Scholar 

  7. Terhal, B.M., DiVincenzo, D.P., Leung, D.W.: Hiding bits in Bell states. Phys. Rev. Lett. 86(25), 5807–5810 (2001)

    Article  ADS  Google Scholar 

  8. Banacloche, J.G.: Hiding messages in quantum data. J. Math. Phys. 43(9), 4531–4536 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Mogos, G.: A quantum way to data hiding. Int. J. Multimed. Ubiquitous Eng. 4(2), 13–20 (2009)

    Google Scholar 

  10. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560(P1), 7–11 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Yan, F., Iliyasu, A.M., Venegas-Andraca, S.E.: A survey of quantum image representations. Quantum Inf. Process. 15(1), 1–35 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Yan, F., Iliyasu, A.M., Le, P.Q.: Quantum image processing: a review of advances in its security technologies. Int. J. Quantum Inf. 15(3), 1730001 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hua, T., Chen, J., Pei, D., Zhang, W., Zhou, N.: Quantum image encryption algorithm based on image correlation decomposition. Int. J. Theor. Phys. 54(2), 526–537 (2015)

    Article  MATH  Google Scholar 

  14. Zhou, N.R., Hua, T.X., Gong, L.H., Pei, D.J., Liao, Q.H.: Quantum image encryption based on generalized Arnold transform and double random phase encoding. Quantum Inf. Process. 14(4), 1193–1213 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Zhou, N., Hu, Y., Gong, L., Li, G.: Quantum image encryption scheme with iterative generalized Arnold transform and quantum image cycle shift operations. Quantum Inf. Process. 16(6), 164 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Zhou, N., Chen, W., Yan, X., Wang, Y.: Bit-level quantum color image encryption scheme with quantum cross-exchange operation and hyper-chaotic system. Quantum Inf. Process. 17(6), 137 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Zhou, N., Yan, X., Liang, H., Tao, X., Li, G.: Multi-image encryption scheme based on quantum 3D Arnold transform and scaled Zhongtang chaotic system. Quantum Inf. Process. 17(12), 338 (2018)

    Article  ADS  MATH  Google Scholar 

  18. Wang, S., Sang, J.Z., Song, X.H., Niu, X.M.: Least significant qubit (LSQb) information hiding algorithm for quantum image. Measurement 73, 352–359 (2015)

    Article  Google Scholar 

  19. Zhang, Y., Lu, K., Gao, Y.H., Wang, M.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12(8), 2833–2860 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. van Schyndel, R.G., Tirkel, A.Z., Osborne, C.F.: A digital watermark. Int. Conf. Image Proc. 2, 86–90 (1994)

    Article  Google Scholar 

  21. Jiang, N., Zhao, N., Wang, L.: LSB based quantum image steganography algorithm. Int. J. Theory Phys. 55(1), 107–123 (2016)

    Article  MATH  Google Scholar 

  22. Le, P., Dong, F., Hitora, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10(1), 63–84 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Venegas-Andraca, S.E., Bose, S.: Storing, processing and retrieving an image using quantum mechanics. Proc. SPIE Conf. Quantum Inf. Comput. 5105, 137–147 (2003)

    ADS  Google Scholar 

  24. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Sang, J.Z., Wang, S., Li, Q.: Least significant qubit algorithm for quantum images. Quantum Inf. Process. 15(11), 4441–4460 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Curty, M., Lewenstein, M., Lütkenhaus, N.: Entanglement as a precondition for secure quantum key distribution. Phys. Rev. Lett. 92(21), 217903 (2004)

    Article  ADS  Google Scholar 

  27. Curty, M., Guehne, O., Lewenstein, M., Luetkenhaus, N.: Detecting quantum correlations for quantum key distribution. In: Proceedings of Conference on Quantum Optics and Applications in Computing and Communications II, International Society for Optics and Photonics, vol. 5631, pp. 9–20 (2005)

  28. Curty, M., Gühne, O., Lewenstein, M., Lütkenhaus, N.: Detecting two-party quantum correlations in quantum-key-distribution protocols. Phys. Rev. A 71(2), 022306 (2005)

    Article  ADS  Google Scholar 

  29. Ganguly, N., Adhikari, S., Majumdar, A.S., Chatterjee, J.: Entanglement witness operator for quantum teleportation. Phys. Rev. Lett. 107(27), 270501 (2011)

    Article  Google Scholar 

  30. Zhao, M.-J., Chen, B., Fei, S.-M.: Detection of the ideal resource for multiqubit teleportation. Chin. Phys. B 24(7), 070302 (2015)

    Article  ADS  Google Scholar 

  31. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52(5), 3457–3487 (1995)

    Article  ADS  Google Scholar 

  32. Maslov, D., Dueck, G.W.: Improved quantum cost for n-bit Toffoli gates. Electron. Lett. 39(25), 1790–1791 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chien-Yuan Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, CF., Chen, CY. Information hiding method based on quantum image by using Bell states. Quantum Inf Process 19, 36 (2020). https://doi.org/10.1007/s11128-019-2523-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2523-z

Keywords

Navigation