Skip to main content
Log in

Separability criteria based on Bloch representation of density matrices

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We study separability criteria in multipartite quantum systems of arbitrary dimensions by using the Bloch representation of density matrices. We first derive the norms of the correlation tensors and obtain the necessary conditions for separability under partition of tripartite and four-partite quantum states. Moreover, based on the norms of the correlation tensors, we obtain the separability criteria by matrix method. Using detailed examples, our results are seen to be able to detect more entangled states than previous studies. Finally, necessary conditions of separability for multipartite systems are given under arbitrary partition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ekert, A.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  2. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  3. Gisin, N., Ribordy, G., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)

    Article  ADS  Google Scholar 

  4. Schauer, S., Huber, M., Hiesmayr, B.C.: Experimentally feasible security check for n-qubit quantum secret sharing. Phys. Rev. A 82, 062311 (2010)

    Article  ADS  Google Scholar 

  5. Wu, S.J., Chen, X.M., Zhang, Y.D.: A necessary and sufficient criterion for multipartite separable states. Phys. Lett. A 275, 244 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  6. Chen, K., Wu, L.A.: A matrix realignment method for recognizing entanglement. Quantum Inf. Comput. 3, 193 (2003)

    MathSciNet  MATH  Google Scholar 

  7. Gurvits, L.: Classical complexity and quantum entanglement. J. Comput. 69, 448 (2004)

    MathSciNet  MATH  Google Scholar 

  8. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  9. Hassan, A.S.M., Joag, P.S.: An experimentally accessible geometric measure for entanglement in N-qudit pure states. Phys. Rev. A 80, 042302 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  10. Fei, S.M., Wang, Z.X., Zhao, H.: A note on entanglement of formation and generalized concurrence. Phys. Lett. A 329, 414 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  11. Xie, C., Zhao, H., Wang, Z.X.: Separability of density matrices of graphs for multipartite systems. Electron. J. Comb. 20, 21 (2013)

    MathSciNet  MATH  Google Scholar 

  12. Zhao, H., Zhang, X.H., Fei, S.M., Wang, Z.X.: Characterization of four-qubit states via bell inequalities. Chin. Sci. Bull. 58, 2334 (2013)

    Article  Google Scholar 

  13. Zhao, H., Fei, S.M., Fan, J., Wang, Z.X.: Inequalities detecting entanglement for arbitrary bipartite systems. Int. J. Quantum Inform. 12, 1450013 (2014)

    Article  MathSciNet  Google Scholar 

  14. Yu, X.Y., Zhao, H.: Separability of tripartite quantum states with strong positive partial transposes. Int. J. Theor. Phys. 54, 292 (2015)

    Article  MathSciNet  Google Scholar 

  15. Zhao, H., Guo, S., Jing, N.H., Fei, S.M.: Construction of bound entangled states based on permutation operators. Quantum Inf. Process. 15, 1529 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  16. Bloch, F.: Nuclear induction. Phys. Rev. 70, 460 (1946)

    Article  ADS  Google Scholar 

  17. Byrd, M.S., Khaneja, N.: Characterization of the positivity of the density matrix in terms of the coherence vector representation. Phys. Rev. A 68, 062322 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  18. Jakobczyk, L., Siennicki, M.: Geometry of bloch vectors in two-qubit system. Phys. Lett. A 286, 383 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  19. Kimura, G.: The Bloch vector for N-level systems. Phys. Lett. A 314, 339 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  20. Li, M., Wang, Z., Wang, J., Shen, S., Fei, S.M.: The norms of Bloch vectors and classification of four-qudits quantum states. Europhys. Lett. A 125, 20006 (2019)

    Article  ADS  Google Scholar 

  21. de Vicente, J.I.: Separability criteria based on the Bloch representation of density matrices. Quantum Inf. Comput. 7, 624 (2007)

    MathSciNet  MATH  Google Scholar 

  22. de Vicente, J.I.: Further results on entanglement detection and quantification from the correlation matrix criterion. J. Phys. A 41, 065309 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  23. Hassan, A.S.M., Joag, P.S.: Separability criterion for multipartite quantum states based on the bloch representation of density matrices. Quantum Inf. Comput. 8, 0773 (2008)

    MathSciNet  MATH  Google Scholar 

  24. Li, M., Wang, J., Fei, S.M., Li-Jost, X.Q.: Quantum separability criteria for arbitrary dimensional multipartite states. Phys. Rev. A 89, 022325 (2014)

    Article  ADS  Google Scholar 

  25. Li, M., Jia, L., Wang, J., Shen, S., Fei, S.M.: Measure and detection of genuine multipartite entanglement for tripartite systems. Phys. Rev. A 96, 052314 (2017)

    Article  ADS  Google Scholar 

  26. Yu, C.S., Song, H.S.: Separability criterion of tripartite qubit systems. Phys. Rev. A 72, 022333 (2005)

    Article  ADS  Google Scholar 

  27. Yu, C.S., Song, H.S.: Entanglement monogamy of tripartite quantum states. Phys. Rev. A 77, 032329 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  28. de Vicente, J.I., Huber, M.: Multipartite entanglement detection from correlation tensors. Phys. Rev. A 84, 062306 (2011)

    Article  ADS  Google Scholar 

  29. Shen, S.Q., Yu, J., Li, M., Fei, S.M.: Improved separability criteria based on bloch representation of density matrices. Sci. Rep. 6, 28850 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant Nos. 11101017, 11531004, 11726016 and 11675113, and Simons Foundation under Grant No. 523868, Key Project of Beijing Municipal Commission of Education (KZ201810028042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Zhang, MM., Jing, N. et al. Separability criteria based on Bloch representation of density matrices. Quantum Inf Process 19, 14 (2020). https://doi.org/10.1007/s11128-019-2504-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2504-2

Keywords

Navigation