Skip to main content
Log in

Kraus operator formalism for quantum multiplexer operations for arbitrary two-qubit mixed states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The dynamics of open quantum systems are described using a set of operators called Kraus operators. In this paper, we show how to find system parameters for a closed system of two qubits undergoing quantum multiplexer operations such that Kraus operators can be written for a single open qubit system (the target qubit) when the initial density matrix of the joint system is in any arbitrary mixed state. The strategy used is to extend the single-qubit open system to a larger two-qubit closed system, which can evolve using unitary dynamics. The constructed two-qubit system is evolved using quantum multiplexer operations, and system parameters are derived to implement the operation. To derive the parameters, we use a reduced Hamiltonian technique wherein the qubit of interest (the target) evolves only in subspaces of the second qubit (the control). The main advantage of our scheme is that it is not restricted to separable product states and/or local unitary evolution of the joint system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nielson, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  2. Makhlin, Y., Schon, G., Shnirman, A.: Quantum state engineering with Josephson-junction devices. Rev. Mod. Phys. 73, 357 (2001)

    Article  ADS  Google Scholar 

  3. Gagnebin, P.K., Skinner, S.R., Behrman, E.C., Steck, J.E., Han, S., Zhou, Z.: Quantum gates using a pulsed bias scheme. Phys. Rev. A 72, 042311 (2005)

    Article  ADS  Google Scholar 

  4. Kane, B.E.: A silicon-based nuclear spin quantum computer. Nature 393, 133 (1998)

    Article  ADS  Google Scholar 

  5. Pachos, J.K., Knight, P.L.: Quantum computation with a one-dimensional optical lattice. Phys. Rev. Lett. 91, 107902 (2003)

    Article  ADS  Google Scholar 

  6. van der Ploeg, S.H.W., Izmalkov, A., van den Brink, A.M., Hübner, U., Grajcar, M., Il’ichev, E., Meyer, H.-G., Zagoskin, A.M.: Controllable coupling of superconducting flux qubits. Phys. Rev. Lett. 98, 057004 (2007)

    Article  ADS  Google Scholar 

  7. Stock, R., James, D.F.V.: A scalable, high-speed measurement-based quantum computer using trapped ions. Rev. Lett. 102, 170501 (2009)

    Article  ADS  Google Scholar 

  8. Gardiner, C.W.: Quantum Noise. Springer, Berlin (1991)

    Book  Google Scholar 

  9. Weiss, U.: Quantum Dissipative Systems, 3rd edn. World Scientific, Singapore (2008)

    Book  Google Scholar 

  10. Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, New York (2002)

    MATH  Google Scholar 

  11. Arrigoni, E., Knap, M., von der Linden, W.: Non-equilibrium dynamical mean field theory: an auxiliary quantum master equation approach. Phys. Rev. Lett. 110, 086403 (2013)

    Article  ADS  Google Scholar 

  12. Dyre, J.C.: Master-equation approach to the glass transition. Phys. Rev. Lett. 58, 792 (1987)

    Article  ADS  Google Scholar 

  13. Giovannetti, V., Palma, G.M.: Master equations for correlated quantum channels. Phys. Rev. Lett. 108, 040401 (2012)

    Article  ADS  Google Scholar 

  14. Wu, L.-A., Kurizki, G., Brumer, P.: Master equation and control of an open quantum system with leakage. Phys. Rev. Lett. 102, 080405 (2009)

    Article  ADS  Google Scholar 

  15. Ferialdi, L.: Exact closed master equation for Gaussian non-Markovian dynamics. Phys. Rev. Lett. 116, 120402 (2016)

    Article  ADS  Google Scholar 

  16. Hall, M.J.W., Cresser, C.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-Markovianity. Phys. Rev. A 89, 042120 (2014)

    Article  ADS  Google Scholar 

  17. Maldunado-Mundo, D., Öhberg, P., Lovett, B.W., Andersson, E.: Investigating the generality of time-local master equations. Phys. Rev. A 86, 042107 (2012)

    Article  ADS  Google Scholar 

  18. Joshi, P., Öhberg, C., Cresser, J.D., Andersson, E.: Markovian evolution of strongly coupled harmonic oscillators. Phys. Rev. A 90, 063815 (2014)

    Article  ADS  Google Scholar 

  19. Vacchini, B.: Generalized master equations using to completely positive dynamics. Phys. Rev. Lett. 117, 230401 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  20. Diósi, L., Ferialdi, L.: General non-Markovian structure of Gaussian master and stochastic Schrödinger equations. Phys. Rev. Lett. 113, 200403 (2014)

    Article  ADS  Google Scholar 

  21. Lindblad, G.: Brownian motion of a quantum harmonic oscillator. Rep. Math. Phys. 10, 393 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  22. Rivas, A., Huelga, S.F.: Open quantum systems. An introduction (2012). arXiv:1104.5242v2

    Book  Google Scholar 

  23. de Vega, I., Alonso, D.: Dynamics of non-Markovian open quantum systems. Rev. Mod. Phys. 89, 15001 (2017)

    Article  MathSciNet  Google Scholar 

  24. Kraus, K.: States. Effects and Operations. Spring, Berlin (1983)

    MATH  Google Scholar 

  25. Romero, L.D., Paz, J.P.: Decoherence and initial correlations in quantum Brownian motion. Phys. Rev. A 55, 4070 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  26. Bouda, J., Bužek, V.: Purification and correlated measurements of bipartite mixed states. Phys. Rev. A 65, 034304 (2003)

    Article  ADS  Google Scholar 

  27. Pechukas, P.: Reduced dynamics needs not be completely positive. Phys. Rev. Lett. 73, 1060 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  28. Kimura, G.: Restriction on relaxation times derived from the Lindblad-type master equations of two-level systems. Phys. Rev. A 66, 062113 (2002)

    Article  ADS  Google Scholar 

  29. Štelmachovič, P., Bužek, V.: Dynamics of open quantum systems initially entangled with the environment: beyond the Kraus representation. Phys. Rev. A 64, 062106 (2001)

    Article  ADS  Google Scholar 

  30. Salgado, D., S´anchez-G´omez, J. L.: arXiv:quant-ph/0211164 (2002)

  31. Hayashi, H., Kimura, G., Ota, Y.: Kraus representation in the presence of initial correlations. Phys. Rev. A 67, 062109 (2003)

    Article  ADS  Google Scholar 

  32. Tong, D.M., Chen, J., Kwek, L.C., Oh, C.H.: Kraus representation for density operator of arbitrary open qubit system. Laser Phys. 16(11), 1512 (2006)

    Article  ADS  Google Scholar 

  33. Arsenijevic, M., Jeknic-Dugic, J., Dugic, M.: Kraus operators for a pair of interacting qubits: a case study. Braz. J. Phys. 48(3), 242 (2018)

    Article  ADS  Google Scholar 

  34. Garigipati, R., Kumar, P.: Mirror inverse operations in linear nearest neighbors using dynamic learning algorithm. IEEE Trans. Neural Netw. Learn. Syst. 27(1), 202 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Preethika Kumar-Eslami.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Udayakumar, P., Kumar-Eslami, P. Kraus operator formalism for quantum multiplexer operations for arbitrary two-qubit mixed states. Quantum Inf Process 18, 361 (2019). https://doi.org/10.1007/s11128-019-2478-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2478-0

Keywords

Navigation