Designing quantum router in IBM quantum computer

Abstract

Quantum router is an essential ingredient in a quantum network. Here, we propose a new quantum circuit for designing quantum router by using IBM’s five-qubit quantum computer. We design an equivalent quantum circuit, by means of single-qubit and two-qubit quantum gates, which can perform the operation of a quantum router. Here, we show the routing of signal information in two different paths (two signal qubits), which is directed by a control qubit. According to the process of routing, the signal information is found to be in a coherent superposition of two paths. We demonstrate the quantum nature of the router by illustrating the entanglement between the control qubit and the two signal qubits (two paths) and confirm the well preservation of the signal information in either of the two paths after the routing process. We perform quantum state tomography to verify the generation of entanglement and preservation of information. It is found that the experimental results are obtained with good fidelity.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  2. 2.

    Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457 (1995)

    Article  ADS  Google Scholar 

  3. 3.

    O’Brien, J.L., Pryde, G.J., White, A.G., Ralph, T.C., Branning, D.: Demonstration of an all-optical quantum controlled-NOT gate. Nature 426, 264 (2003)

    Article  ADS  Google Scholar 

  4. 4.

    Brassard, G.: Is information the key? Nat. Phys. 1, 2 (2005)

    Article  Google Scholar 

  5. 5.

    Medhi, D., Ramasamy, K.: Network Routing: Algorithms, Protocols, and Architectures. Morgan Kaufmann, Burlington (2017)

    Google Scholar 

  6. 6.

    Saleh, B.E.A., Teich, M.C.: Fundamentals of Photonics. Wiley, New York (1991)

    Google Scholar 

  7. 7.

    Kimble, H.J.: The quantum internet. Nature 453, 1023 (2008)

    Article  ADS  Google Scholar 

  8. 8.

    Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)

    Article  ADS  MATH  Google Scholar 

  9. 9.

    Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dusek, M., Lutkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301 (2009)

    Article  ADS  Google Scholar 

  10. 10.

    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. 11.

    Janet, L.J., Vogel, E.M., Aitchison, J.S.: Ion-exchanged optical waveguides for all-optical switching. Appl. Opt. 29, 3126 (1990)

    Article  ADS  Google Scholar 

  12. 12.

    Ji, R., Yang, L., Zhang, L., Tian, Y., Ding, J., Chen, H., Lu, Y., Zhou, P., Zhu, W.: Five-port optical router for photonic networks-on-chip. Opt. Exp. 19, 20258 (2011)

    Article  ADS  Google Scholar 

  13. 13.

    Doyle, J., Carroll, J.D.: Routing TCP/IP. Cisco Press, Indianapolis (2005)

    Google Scholar 

  14. 14.

    Buzek, V., Hillery, M.: Quantum copying: beyond the no-cloning theorem. Phys. Rev. A 54, 1844 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  15. 15.

    Scarani, V., Iblisdir, S., Gisin, N., Acin, A.: Quantum cloning. Rev. Mod. Phys. 77, 1225 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. 16.

    Heng, F., et al.: Quantum cloning machines and the applications. Phys. Rep. 544, 241 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  17. 17.

    Bartkiewicz, K., Miranowicz, A.: Optimal cloning of qubits given by an arbitrary axisymmetric distribution on the Bloch sphere. Phys. Rev. A 82, 042330 (2010)

    Article  ADS  Google Scholar 

  18. 18.

    Lemr, K., Bartkiewicz, K., Cernoch, A., Soubusta, J., Miranowicz, A.: Experimental linear-optical implementation of a multifunctional optimal qubit cloner. Phys. Rev. A 85, 050307 (2012)

    Article  ADS  Google Scholar 

  19. 19.

    Duan, L.-M., Monroe, C.: Colloquium: quantum networks with trapped ions. Rev. Mod. Phys. 82, 1209 (2010)

    Article  ADS  Google Scholar 

  20. 20.

    Duan, L.-M., Kimble, H.J.: Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92, 127902 (2004)

    Article  ADS  Google Scholar 

  21. 21.

    Giovannetti, V., Lloyd, S., Maccone, L.: Quantum random access memory. Phys. Rev. Lett. 100, 160501 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. 22.

    Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector machine for big data classification. Phys. Rev. Lett. 113, 130503 (2014)

    Article  ADS  Google Scholar 

  23. 23.

    Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum principal component analysis. Nat. Phys. 10, 631 (2014)

    Article  Google Scholar 

  24. 24.

    Yuan, X.X., Ma, J.-J., Hou, P.-Y., Chang, X.-Y., Zu, C., Duan, L.-M.: Experimental demonstration of a quantum router. Sci. Rep. 5, 12452 (2015)

    Article  ADS  Google Scholar 

  25. 25.

    Knoernschild, C., Kim, C., Lu, F.P., Kim, J.: Multiplexed broadband beam steering system utilizing high speed MEMS mirrors. Opt. Exp. 17, 7233 (2009)

    Article  ADS  Google Scholar 

  26. 26.

    Hall, M.A., Altepeter, J.B., Kumar, P.: Ultrafast switching of photonic entanglement. Phys. Rev. Lett. 106, 053901 (2011)

    Article  ADS  Google Scholar 

  27. 27.

    Zueco, D., Galve, F., Kohler, S., Hanggi, P.: Quantum router based on ac control of qubit chains. Phys. Rev. A 80, 042303 (2009)

    Article  ADS  Google Scholar 

  28. 28.

    Aoki, T., Parkins, A.S., Alton, D.J., Regal, C.A., Dayan, B., Ostby, E., Vahala, K.J., Kimble, H.J.: Efficient routing of single photons by one atom and a microtoroidal cavity. Phys. Rev. Lett. 102, 083601 (2009)

    Article  ADS  Google Scholar 

  29. 29.

    Hoi, I.-C., Wilson, C.M., Johansson, G., Palomaki, T., Peropadre, B., Delsing, P.: Demonstration of a single-photon router in the microwave regime. Phys. Rev. Lett. 107, 073601 (2011)

    Article  ADS  Google Scholar 

  30. 30.

    Chang, X.-Y., Wang, Y.-X., Zu, C., Liu, K., Duan, L.-M.: Experimental demonstration of an entanglement-based quantum router. arXiv preprint arXiv:1207.7265v1 (2012)

  31. 31.

    Lemr, K., Cernoch, A.: Linear-optical programmable quantum router. Opt. Commun. 300, 282 (2013)

    Article  ADS  Google Scholar 

  32. 32.

    Yan, G.-A., Cai, Q.-Y., Chen, A.X.: Information-holding quantum router of single photons using natural atom. Eur. Phys. J. D 70, 93 (2016)

    Article  ADS  Google Scholar 

  33. 33.

    Chen, Y., Jiang, D., Xie, L., Chen, L.: Quantum router for single photons carrying spin and orbital angular momentum. Sci. Rep. 6, 27033 (2016)

    Article  ADS  Google Scholar 

  34. 34.

    Lu, J., Wang, Z.H., Zhou, L.: T-shaped single-photon router. Opt. Express 23, 22955 (2015)

    Article  ADS  Google Scholar 

  35. 35.

    Qu, C.-C., Zhou, L., Sheng, Y.-B.: Cascaded multi-level linear-optical quantum router. Int. J. Theor. Phys. 54, 3004 (2015)

    Article  MATH  Google Scholar 

  36. 36.

    Chen, X.-Y., Zhang, F.-Y., Li, C.: Single-photon quantum router by two distant artificial atoms. J. Opt. Soc. Am. B 33, 583 (2016)

    Article  ADS  Google Scholar 

  37. 37.

    Epping, M., Kampermann, H., BruB, D.: Robust entanglement distribution via quantum network coding. New J. Phys. 18, 103052 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  38. 38.

    Sazim, S., Chiranjeevi, V., Chakrabarty, I., Srinathan, K.: Retrieving and routing quantum information in a quantum network. Quantum Inf. Process. 14, 4651 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. 39.

    Sala, A., Blaauboer, M.: Proposal for a transmon-based quantum router. J. Phys. Condens. Matter 28, 275701 (2016)

    Article  Google Scholar 

  40. 40.

    Li, R., Alvarez-Rodriguez, U., Lamata, L., Solano, E.: Approximate quantum adders with genetic algorithms: an IBM quantum experience. Quantum Meas. Quantum Metrol. 4, 1 (2017)

    Article  ADS  Google Scholar 

  41. 41.

    Maji, R., Behera, B.K., Panigrahi, P.K.: Solving Linear Systems of Equations by Using the Concept of Grover’s Search Algorithm: An IBM Quantum Experience. arXiv preprint arXiv:1801.00778 (2017)

  42. 42.

    Gurnani, K., Behera, B.K., Panigrahi, P.K.: Demonstration of Optimal Fixed-Point Quantum Search Algorithm in IBM Quantum Computer. arXiv preprint arXiv:1712.10231 (2017)

  43. 43.

    Gangopadhyay, S., Manabputra, Behera, B.K., Panigrahi, P.K.: Generalization and demonstration of an entanglement-based Deutsch–Jozsa-like algorithm using a 5-qubit quantum computer. Quantum Inf. Process. 17, 160 (2018)

  44. 44.

    Yalcınkaya, I., Gedik, Z.: Optimization and experimental realization of the quantum permutation algorithm. Phys. Rev. A 96, 062339 (2017)

    Article  ADS  Google Scholar 

  45. 45.

    Ghosh, D., Agarwal, P., Pandey, P., Behera, B.K., Panigrahi, P.K.: Automated error correction in IBM quantum computer and explicit generalization. Quantum Inf. Process. 17, 153 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. 46.

    Wootton, J.R., Loss, D.: A repetition code of 15 qubits. Phys. Rev. A 97, 052313 (2018)

    Article  ADS  Google Scholar 

  47. 47.

    Satyajit, S., Srinivasan, K., Behera, B.K., Panigrahi, P.K.: Nondestructive discrimination of a new family of highly entangled states in IBM quantum computer. Quantum Inf. Process. 17, 212 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. 48.

    Sisodia, M., Shukla, A., Thapliyal, K., Pathak, A.: Design and experimental realization of an optimal scheme for teleportion of an n-qubit quantum state. Quantum Inf. Process. 16, 292 (2017)

    Article  ADS  Google Scholar 

  49. 49.

    Vishnu, P.K., Joy, D., Behera, B.K., Panigrahi, P.K.: Experimental demonstration of non-local controlled-unitary quantum gates using a five-qubit quantum computer. Quantum Inf. Process. 17, 274 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. 50.

    Kalra, A.R., Gupta, N., Behera, B.K., Prakash, S., Panigrahi, P.K.: Demonstration of the no-hiding theorem on the 5-Qubit IBM quantum computer in a category-theoretic framework. Quantum Inf. Process. 18, 170 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  51. 51.

    Das, S., Paul, G.: Experimental test of Hardy’s paradox on a five-qubit quantum computer. arXiv preprint arXiv:1712.04925 (2017)

  52. 52.

    Alsina, D., Latorre, J.I.: Experimental test of Mermin inequalities on a five-qubit quantum computer. Phys. Rev. A 94, 012314 (2016)

    Article  ADS  Google Scholar 

  53. 53.

    Garcia-Martin, D., Sierra, G.: Five experimental tests on the 5-Qubit IBM quantum computer. J. Appl. Math. Phys. 6, 1460 (2018)

    Article  Google Scholar 

  54. 54.

    Berta, M., Wehner, S., Wilde, M.M.: Entropic uncertainty and measurement reversibility. New J. Phys. 18, 073004 (2016)

    Article  ADS  Google Scholar 

  55. 55.

    Roy, S., Behera, B.K., Panigrahi, P.K.: Experimental realization of quantum violation of entropic noncontextual inequality in four dimension using IBM quantum computer. arXiv preprint arXiv:1710.10717 (2017)

  56. 56.

    Huffman, E., Mizel, A.: Violation of noninvasive macrorealism by a superconducting qubit: implementation of a Leggett–Garg test that addresses the clumsiness loophole. Phys. Rev. A 95, 032131 (2017)

    Article  ADS  Google Scholar 

  57. 57.

    Kandala, A., Mezzacapo, A., Temme, K., Takita, M., Brink, M., Chow, J.M., Gambetta, J.M.: Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549, 242 (2017)

    Article  ADS  Google Scholar 

  58. 58.

    Hegade, N.N., Behera, B.K., Panigrahi, P.K.: Experimental demonstration of quantum tunneling in IBM quantum computer. arXiv preprint arXiv:1712.07326 (2017)

  59. 59.

    Riste, D., Silva, M.P.d., Ryan, C.A., Cross, A.W., Corcoles, A.D., Smolin, J.A., Gambetta, J.M., Chow, J.M., Johnson, B.R.: Demonstration of quantum advantage in machine learning. npj Quantum Inf. 3, 16 (2017)

  60. 60.

    Hu, W.: Empirical analysis of decision making of an AI agent on IBM’s 5Q quantum computer. Nat. Sci. 10, 45 (2018)

    Google Scholar 

  61. 61.

    Behera, B.K., Seth, S., Das, A., Panigrahi, P.K.: Demonstration of entanglement purification and swapping protocol to design quantum repeater in IBM quantum computer. Quantum Inf. Process. 18, 108 (2019)

    Article  ADS  MATH  Google Scholar 

  62. 62.

    Dash, A., Rout, S., Behera, B.K., Panigrahi, P.K.: Quantum locker using a novel verification algorithm and its experimental realization in IBM quantum computer. arXiv preprint arXiv:1710.05196 (2017)

  63. 63.

    Behera, B.K., Banerjee, A., Panigrahi, P.K.: Experimental realization of quantum cheque using a five-qubit quantum computer. Quantum Inf. Process. 16, 312 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

B.K.B. acknowledges financial support of IISER Kolkata. T.R. and A.G. acknowledge financial support of Inspire fellowship provided by Department of Science and Technology (DST), Govt. of India. We acknowledge the support of IBM Quantum Experience for providing access to the IBM quantum processors. The views expressed are those of the authors and do not reflect the official position of IBM or the IBM Quantum Experience team.

Author information

Affiliations

Authors

Contributions

Theoretical analysis, design of quantum circuit and simulation were performed by B.K.B, T.R and A.G. Collection and analysis of data were performed by B.K.B. and T.R. The project was supervised by B.K.B. A thorough checking of the manuscript was done by P.K.P. B.K.B., T.R. and A.G. have completed the project under the guidance of P.K.P.

Corresponding author

Correspondence to Prasanta K. Panigrahi.

Ethics declarations

Conflict of interest

The authors declare no competing financial as well as non-financial interests.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Behera, B.K., Reza, T., Gupta, A. et al. Designing quantum router in IBM quantum computer. Quantum Inf Process 18, 328 (2019). https://doi.org/10.1007/s11128-019-2436-x

Download citation

Keywords

  • Quantum router
  • Quantum communication
  • IBM quantum experience