Skip to main content
Log in

Linear-optical heralded amplification protocol for two-photon spatial-mode-polarization hyperentangled state

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Hyperentanglement can enlarge the capacity of quantum channel and has big potential application in long-distance quantum communication. However, the channel noise may cause photon transmission loss, which largely limits the practical application of hyperentanglement. In the paper, we propose a linear-optical heralded amplification protocol for protecting the two-photon spatial-mode-polarization hyperentangled state. Our protocol can effectively increase the fidelity of the hyperentangled state while preserve its encoded spatial and polarization features. Comparing with previous heralded amplification protocol for the spatial-mode-polarization hyperentangled state, our protocol is easier to be implemented under current experimental condition. Moreover, besides amplification, if necessary, our protocol can adjust the entanglement coefficients in both polarization and spatial-mode degrees of freedom of the distilled hyperentangled state and recover the less-entangled hyperentangled state into the maximally entangled state. Based on above features, our protocol gives a possible solution to overcome the photon loss and decoherence problems occurred in practical noisy quantum channel condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  2. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68, 557 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  3. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  4. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  5. Zhang, W., Ding, D.S., Sheng, Y.B., Zhou, L., Shi, B.S., Guo, G.C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501 (2017)

    Article  ADS  Google Scholar 

  6. Zhu, F., Zhang, W., Sheng, Y.B., Huang, Y.D.: Experimental long-distance quantum secret direct communication. Sci. Bull. 62, 1519 (2017)

    Article  Google Scholar 

  7. Qin, H.W., Tang, W.K.S., Tso, R.: Establishing rational networking using the DL04 quantum secure direct communication protocol. Quantum Inf. Process. 17, 152 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  8. Zheng, X.Y., Long, Y.X.: Controlled quantum secure direct communication with authentication protocol based on five-particle cluster state and classical XOR operation. Quantum Inf. Process. 18, 129 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  9. Chen, S.S., Zhou, L., Zhong, W., Sheng, Y.B.: Three-step three-party quantum secure direct communication. Sci. China Phys. Mech. Astron. 61, 90312 (2018)

    Article  ADS  Google Scholar 

  10. Wu, F.Z., Yang, G.J., Wang, H.B., Xiong, J., Alzahrani, F., Hobiny, A., Deng, F.G.: High-capacity quantum secure direct communication with two-photon six-qubit hyperentangled states. Sci. China Phys. Mech. Astron. 60, 120313 (2017)

    Article  ADS  Google Scholar 

  11. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  12. Wang, M.Y., Yan, F.L.: Quantum teleportation of a generic two-photon state with weak cross-Kerr nonlinearities. Quantum Inf. Process. 15, 3383–3392 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  13. Li, T.C., Yin, Z.Q.: Quantum superposition, entanglement, and state teleportation of a microorganism on an electromechanical oscillator. Sci. Bull. 61, 163 (2016)

    Article  Google Scholar 

  14. Deng, F.G., Ren, B.C., Li, X.H.: Quantum hyperentanglement and its applications in quantum information processing. Sci. Bull. 62, 46 (2017)

    Article  Google Scholar 

  15. Ding, D., He, Y.Q., Yan, F.L., Gao, T.: On four-photon entanglement from parametric down-conversion process. Quantum Inf. Process. 17, 243 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  16. Chen, N., Zhang, L.X., Pei, C.X.: Faithful qubit transmission in a quantum communication network with heterogeneous channels. Quantum Inf. Process. 17, 79 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  17. Bruss, D., Macchiavello, C.: Optimal eavesdropping in cryptography with three-dimensional quantum states. Phys. Rev. Lett. 88, 127901 (2002)

    Article  ADS  Google Scholar 

  18. Cerf, N.J., Bourennane, M., Karlsson, A., Gisin, N.: Security of quantum key distribution using d-level systems. Phys. Rev. Lett. 88, 127902 (2002)

    Article  ADS  Google Scholar 

  19. Wilde, M.M., Uskov, D.B.: Linear-optical hyperentanglement assisted quantum error-correcting code. Phys. Rev. A 79, 022305 (2009)

    Article  ADS  Google Scholar 

  20. Sheng, Y.B., Deng, F.G.: Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement. Phys. Rev. A 81, 032307 (2010)

    Article  ADS  Google Scholar 

  21. Ren, B.C., Long, G.L.: General hyperentanglement concentration for photon systems assisted by quantum dot spins inside optical microcavities. Opt. Exp. 22, 6547 (2014)

    Article  ADS  Google Scholar 

  22. Du, F.F., Shi, Z.R.: Robust hybrid hyper-controlled-not gates assisted by an input–output process of low-Q cavities. Opt. Exp. 27, 17493 (2019)

    Article  ADS  Google Scholar 

  23. Wang, G.Y., Ren, B.C., Deng, F.G., Long, G.L.: Complete analysis of hyperentangled Bell states assisted with auxiliary hyperentanglement. Opt. Exp. 27, 8994 (2019)

    Article  ADS  Google Scholar 

  24. Ren, B.C., Wang, H., Alzahrani, F., Hobiny, A., Deng, F.G.: Hyperentanglement concentration of nonlocal two-photon six-qubit systems with linear optics. Ann. Phys. 385, 86–94 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  25. Wang, H., Ren, B.C., Wang, A.H., Alsaedi, A., Hayat, T., Deng, F.G.: General hyperentanglement concentration for polarization-spatial-time-bin multi-photon systems with linear optics. Front. Phys. 13, 130315 (2018)

    Article  Google Scholar 

  26. Zheng, Y.Y., Liang, L.X., Zhang, M.: Error-heralded generation and self-assisted complete analysis of two-photon hyperentangled Bell states through single-sided quantum-dot-cavity systems. Sci. China Phys. Mech. Astron. 62, 970312 (2019)

    Article  Google Scholar 

  27. Wang, M.Y., Yan, F.L., Gao, T.: Deterministic state analysis for polarization-spatial-time-bin hyperentanglement with nonlinear optics. Laser Phys. Lett. 15, 125206 (2018)

    Article  ADS  Google Scholar 

  28. Wang, M.Y., Xu, J.Z., Yan, F.L., Gao, T.: Entanglement concentration for polarization-spatial-time-bin hyperentangled Bell states. EPL 123, 60002 (2018)

    Article  ADS  Google Scholar 

  29. Ralph, T.C., Lund, A.P.: Quantum communication measurement and computing. In: lvovsky, A. (ed.) Proceedings of the 9th International Conference. pp. 155–160. AIP , New York (2009)

  30. Gisin, N., Pironio, S., Sangouard, N.: Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier. Phys. Rev. Lett. 105, 070501 (2010)

    Article  ADS  Google Scholar 

  31. Curty, M., Moroder, T.: Heralded-qubit amplifiers for practical device-independent quantum key distribution. Phys. Rev. A 84, 010304 (2011)

    Article  ADS  Google Scholar 

  32. Pitkanen, D., Ma, X., Wickert, R., van Loock, P., Lütkenhaus, N.: Effcient heralding of photonic qubits with applications to device-independent quantum key distribution. Phys. Rev. A 84, 022325 (2011)

    Article  ADS  Google Scholar 

  33. Kaushik, P., Seshadreesan, Takeoka M., Sasaki, M.: Progress towards practical device-independent quantum key distribution with spontaneous parametric down-conversion sources, on–off photodetectors, and entanglement swapping. Phys. Rev. A 93, 042328 (2016)

    Article  ADS  Google Scholar 

  34. Meyer-Scott, E., Bula, M., Bartkiewicz, K., C̆ernoch, A., Soubusta, J., Jennewein, T., Lemr, K.: Entanglement-based linear-optical qubit amplifier. Phys. Rev. A 88, 012327 (2013)

    Article  ADS  Google Scholar 

  35. Zapatero, V., Curty, M.: Long-distance device-independent quantum key distribution (2019). arXiv:1905.03591

  36. Osorio, C.I., Bruno, N., Sangouard, N., Zbinden, H., Gisin, N., Thew, R.T.: Heralded photon amplification for quantum communication. Phys. Rev. A 86, 023815 (2012)

    Article  ADS  Google Scholar 

  37. Zhang, S.L., Yang, S., Zou, X.B., Shi, B.S., Guo, G.C.: Protecting single-photon entangled state from photon loss with noiseless linear amplification. Phys. Rev. A 86, 034302 (2012)

    Article  ADS  Google Scholar 

  38. Minár̆, J., de Riedmatten, H., Sangouard, N.: Quantum repeaters based on heralded qubit amplifiers. Phys. Rev. A 85, 032313 (2012)

    Article  ADS  Google Scholar 

  39. Bruno, N., Pini, V., Martin, A., Thew, R.T.: A complete characterization of the heralded noiseless amplification of photons. New J. Phys. 15, 093002 (2013)

    Article  ADS  Google Scholar 

  40. Kocsis, S., Xiang, G.Y., Ralph, T.C., Pryde, G.J.: Heralded noiseless amplification of a photon polarization qubit. Nat. Phys. 9, 23–28 (2013)

    Article  Google Scholar 

  41. McMahon, N.A., Lund, A.P., Ralph, T.C.: Optimal architecture for a nondeterministic noiseless linear amplifier. Phys. Rev. A 89, 023846 (2014)

    Article  ADS  Google Scholar 

  42. Sheng, Y.B., Ou-Yang, Y., Zhou, L., Wang, L.: Protecting single-photon multi-mode W state from photon loss. Quantum Inf. Process. 13, 1595 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  43. Wang, T.J., Cao, C., Wang, C.: Linear-optical implementation of hyperdistillation from photon loss. Phys. Rev. A 89, 052303 (2014)

    Article  ADS  Google Scholar 

  44. Wang, T.J., Liu, L.L., Zhang, R., Cao, C., Wang, C.: One-step hyperentanglement purification and hyperdistillation with linear optics. Opt. Exp. 23, 9284 (2015)

    Article  ADS  Google Scholar 

  45. Zhou, L., Sheng, Y.B.: Recyclable amplification protocol for the single-photon entangled state. Laser Phys. Lett. 12, 045203 (2015)

    Article  ADS  Google Scholar 

  46. Ou-Yang, Y., Feng, Z.F., Zhou, L., Sheng, Y.B.: Protecting single-photon entanglement with imperfect single-photon source. Quantum Inf. Process. 14, 635 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  47. Ou-Yang, Y., Feng, Z.F., Zhou, L., Sheng, Y.B.: Linear-optical qubit amplification with spontaneous parametric down-conversion source. Laser Phys. 26, 015204 (2016)

    Article  ADS  Google Scholar 

  48. Zhou, L., Ou-Yang, Y., Wang, L., Sheng, Y.B.: Protecting single-photon entanglement with practical entanglement source. Quantum Inf. Process. 16, 151 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  49. Bruno, N., Pini, V., Martin, A., Verma, V.B., Nam, S.W., Mirin, R., Lita, A., Marsili, F., Korzh, B., Bussieres, F., Sangouard, N., Zbinden, H., Gisin, N., Thew, R.: Heralded amplification of photonic qubits. Opt. Exp. 24, 125 (2016)

    Article  ADS  Google Scholar 

  50. Monteiro, F., Verbanis, E., Vivoli Caprara, V., Martin, A., Gisin, N., Zbinden, H., Thew, R.T.: Heralded amplification of path entangled quantum states. Quantum Sci. Technol. 2, 024008 (2017)

    Article  ADS  Google Scholar 

  51. Wang, D.D., Jin, Y.Y., Qin, S.X., Zu, H., Zhou, L., Zhong, W., Sheng, Y.B.: Heralded noiseless amplification for single-photon entangled state with polarization feature. Quantum Inf. Process. 17, 56 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  52. Jin, Y.Y., Qin, S.X., Zu, H., Zhou, L., Zhong, W., Sheng, Y.B.: Heralded amplification of single-photon entanglement with polarization feature. Front. Phys. 13, 130321 (2018)

    Article  Google Scholar 

  53. Chen, L.Q., Sheng, Y.B., Zhou, L.: Noiseless linear amplification for the single-photon entanglement of arbitrary polarization–time-bin qudit. Chin. Phys. B 28, 010302 (2019)

    Article  ADS  Google Scholar 

  54. Deng, F.G.: Optimal nonlocal multipartite entanglement concentration based on projection measurements. Phys. Rev. A 85, 022311 (2012)

    Article  ADS  Google Scholar 

  55. Sheng, Y.B., Zhou, L., Zhao, S.M., Zheng, B.Y.: Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs. Phys. Rev. A 85, 012307 (2012)

    Article  ADS  Google Scholar 

  56. Sheng, Y.B., Zhou, L., Zhao, S.M.: Efficient two step entanglement concentration for arbitrary W states. Phys. Rev. A 85, 042302 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant No. 11974189, the China Postdoctoral Science Foundation under Grant No. 2018M642293, the open research fund of the Key Lab of Broadband Wireless Communication and Sensor Network Technology, Nanjing University of Posts and Telecommunications, Ministry of Education, under Grant No. JZNY201908, and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lan Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, G., Zhang, YS., Yang, ZR. et al. Linear-optical heralded amplification protocol for two-photon spatial-mode-polarization hyperentangled state. Quantum Inf Process 18, 317 (2019). https://doi.org/10.1007/s11128-019-2432-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2432-1

Keywords

Navigation