Skip to main content
Log in

Multicast-based multiparty remote state preparation schemes of two-qubit states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose two novel schemes for multicast-based remote preparation of two kinds of two-qubit states with the aid of the eight-qubit entangled states as the quantum channels. In our scenario, the different encoded information is transmitted synchronously from one sender to many spatially separated receivers. Moreover, it is shown that the first scheme is realized successfully and efficiently, and only the four-qubit projective measurement and appropriate local unitary operations are needed. In particular, the eight-qubit partially entangled channel is utilized in the second.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bennett, C.H., Brassad, G.: In: Proceedings IEEE International Conference on Computers, Systems and Signal Processing Bangalore, India, p. 175. IEEE, New York (1984)

  2. Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  3. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bells theorem. Phys. Rev. Lett. 68, 557 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  4. Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78, 022321 (2008)

    Article  ADS  Google Scholar 

  5. Pinheiro, P., Ramos, R.: Two-layer quantum key distribution. Quantum Inf. Process. 14, 2111 (2015)

    Article  ADS  Google Scholar 

  6. Zhang, C.M., Li, M., Yin, Z.Q., Li, H.W., Chen, W., Han, Z.F.: Decoy-state measurement-device-independent quantum key distribution with mismatched-basis statistics. Sci. China Phys. Mech. Astron. 58, 590301 (2015)

    Article  Google Scholar 

  7. Bai, Z.L., Wang, X.Y., Yang, S.S., Li, Y.H.: High-efficiency Gaussian key reconciliation in continuous variable quantum key distribution. Sci. China Phys. Mech. Astron. 59, 614201 (2016)

    Article  Google Scholar 

  8. Cao, D.Y., Liu, B.H., Wang, Z., Huang, Y.F., Li, C.F., Guo, G.C.: Multiuser-to-multiuser entanglement distribution based on 1550 nm polarization-entangled photons. Sci. Bull. 60, 1128 (2015)

    Article  Google Scholar 

  9. Deng, F.G., Long, G.L.: Controlled order rearrangement encryption for quantum key distribution. Phys. Rev. A 68, 042315 (2003)

    Article  ADS  Google Scholar 

  10. Huang, W., Su, Q., Xu, B.J., Liu, B., Fan, F., Jia, H.Y., Yang, Y.H.: Improved multiparty quantum key agreement in travelling mode. Sci. China Phys. Mech. Astron. 59, 120311 (2016)

    Article  Google Scholar 

  11. Wang, T.J., Song, S.Y., Long, G.L.: Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities. Phys. Rev. A 85, 062311 (2012)

    Article  ADS  Google Scholar 

  12. Ren, B.C., Du, F.F., Deng, F.G.: Two-step hyperentanglement purification with the quantum-state-joining method. Phys. Rev. A 90, 052309 (2014)

    Article  ADS  Google Scholar 

  13. Li, X.H., Ghose, S.: Hyperentanglement concentration for time-bin and polarization hyperentangled photons. Phys. Rev. A 91, 062302 (2015)

    Article  ADS  Google Scholar 

  14. Wang, T.J., Liu, L.L., Zhang, R., Cao, C., Wang, C.: One-step hyperentanglement purification and hyperdistillation with linear optics. Opt. Express 23, 9284 (2015)

    Article  ADS  Google Scholar 

  15. Wang, G.Y., Liu, Q., Deng, F.G.: Hyperentanglement purification for two-photon six-qubit quantum systems. Phys. Rev. A 94, 032319 (2016)

    Article  ADS  Google Scholar 

  16. Deng, F., Ren, B.C., Li, X.H.: Quantum hyperentanglement and its applications in quantum information processing. Sci. Bull. 62, 46 (2017)

    Article  Google Scholar 

  17. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  18. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  19. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    Article  ADS  Google Scholar 

  20. Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)

    Article  ADS  Google Scholar 

  21. Liu, Z.H., Chen, H.W., Wang, D.: Cryptanalysis and improvement of three-particle deterministic secure and high bit-rate direct quantum communication protocol. Quantum Inf. Process. 13(6), 1345–1351 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  22. Hu, J.Y., Yu, B., Jing, M.Y., Xiao, L.T., Jia, S.T., Qin, G.Q., Long, G.L.: Experimental quantum secure direct communication with single photons. Light Sci. Appl. 5, e16144 (2016)

    Article  Google Scholar 

  23. Zhang, W., Ding, D.S., Sheng, Y.B., Zhou, L., Shi, B.S., Guo, G.C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501 (2017)

    Article  ADS  Google Scholar 

  24. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  25. Liu, X.S., Long, G.L., Tong, D.M., Li, F.: General scheme for superdense coding between multiparties. Phys. Rev. A 65, 022304 (2002)

    Article  ADS  Google Scholar 

  26. Barreiro, J.T., Wei, T.C., Kwiat, P.G.: Beating the channel capacity limit for linear photonic superdense coding. Nat. Phys. 4, 282 (2008)

    Article  Google Scholar 

  27. Liu, B.H., Hu, X.M., Huang, Y.F., Li, C.F., Guo, G.C., Karlsson, A., Laine, E.M., Maniscalco, S., Macchiavello, C., Piilo, J.: Experimental demonstration of efficient superdense coding in the presence of non-Markovian noise. Europhys. Lett. 114, 10005 (2016)

    Article  ADS  Google Scholar 

  28. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  29. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575 (1997)

    Article  ADS  Google Scholar 

  30. Xiao, X., Yao, Y., Zhong, W.J., Li, Y.L., Xie, Y.M.: Enhancing teleportation of quantum Fisher information by partial measurements. Phys. Rev. A 93, 012307 (2016)

    Article  ADS  Google Scholar 

  31. Yang, Y.Q., Zha, X.W., Yu, Y.: Asymmetric bidirectional controlled teleportation via seven-qubit cluster state. Int. J. Theor. Phys. 55, 4197 (2016)

    Article  Google Scholar 

  32. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A.K., Wootters, W.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996)

    Article  ADS  Google Scholar 

  33. Sheng, Y.B., Deng, F.G.: Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement. Phys. Rev. A 81, 032307 (2010)

    Article  ADS  Google Scholar 

  34. Sheng, Y.B., Deng, F.G.: One-step deterministic polarization-entanglement purification using spatial entanglement. Phys. Rev. A 82, 044305 (2010)

    Article  ADS  Google Scholar 

  35. Li, T., Yang, G.J., Deng, F.G.: Heralded quantum repeater for a quantum communication network based on quantum dots embedded in optical microcavities. Phys. Rev. A 93, 012302 (2016)

    Article  ADS  Google Scholar 

  36. Zhou, L., Sheng, Y.B.: Purification of logic-qubit entanglement. Sci. Rep. 6, 28813 (2016)

    Article  ADS  Google Scholar 

  37. Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63, 014302 (2000)

    Article  ADS  Google Scholar 

  38. Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)

    Article  ADS  Google Scholar 

  39. Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001)

    Article  ADS  Google Scholar 

  40. Devetak, I., Berger, T.: Low-entanglement remote state preparation. Phys. Rev. Lett. 87, 197901 (2001)

    Article  ADS  Google Scholar 

  41. Xiao, X.Q., Liu, J.M., Zeng, G.H.: Joint remote state preparation of arbitrary two- and three-qubit states. J. Phys. B At. Mol. Opt. Phys. 44, 075501 (2011)

    Article  ADS  Google Scholar 

  42. Nguyen, B.A., Cao, T.B., Nung, V.D.: Joint remote preparation of four-qubit cluster-type states revisited. J. Phys. B At. Mol. Opt. Phys. 44, 135506 (2011)

    Article  Google Scholar 

  43. Liang, H.Q., Liu, J.M., Feng, S.S., Chen, J.G., Xu, X.Y.: Effects of noises on joint remote state preparation via a GHZ-class channel. Quantum Inf. Process. 14, 3857 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  44. Wang, D., et al.: Remote preparation of a class of three-qubit states. Opt. Commun. 281, 871 (2008)

    Article  ADS  Google Scholar 

  45. Liu, J.M., Feng, X.L., Oh, C.H.: Remote preparation of arbitrary two- and three-qubit states. EPL 87, 30006 (2009)

    Article  ADS  Google Scholar 

  46. Wang, D., Hoehn, R.D., Ye, L., Kais, S.: Generalized remote preparation of arbitrary m-qubit entangled states via genuine entanglements. Entropy 17, 1755 (2015)

    Article  ADS  Google Scholar 

  47. Wang, D., Hu, Y.D., Wang, Z.Q., Ye, L.: Efficient and faithful remote preparation of arbitrary three- and four-particle W-class entangled states. Quantum Inf. Process. 14, 2135 (2015)

    Article  ADS  Google Scholar 

  48. Xu, Z.Y., Liu, C., Luo, S.L., Zhu, S.Q.: Non-Markovian effect on remote state preparation. Ann. Phys. 356, 29 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  49. Mikami, H., Kobayashi, T.: Remote preparation of qutrit states with biphotons. Phys. Rev. A 75, 022325 (2007)

    Article  ADS  Google Scholar 

  50. Peng, X.H., et al.: Experimental implementation of remote state preparation by nuclear magnetic resonance. Phys. Lett. A 306, 271 (2003)

    Article  ADS  Google Scholar 

  51. Xiang, G.Y., Li, J., Yu, B., Guo, G.C.: Remote preparation of mixed states via noisy entanglement. Phys. Rev. A 72, 012315 (2005)

    Article  ADS  Google Scholar 

  52. Peters, N.A., Barreiro, J.T., Goggin, M.E., Wei, T.C., Kwiat, P.G.: Remote state preparation: arbitrary remote control of photon polarization. Phys. Rev. Lett. 94, 150502 (2005)

    Article  ADS  Google Scholar 

  53. Jeffrey, E., Peters, N.A., Kwiat, P.G.: Towards a periodic deterministic source of arbitrary single-photon states. New J. Phys. 6, 100 (2004)

    Article  ADS  Google Scholar 

  54. Liu, W.T., Wu, W., Ou, B.Q., Chen, P.X., Li, C.Z., Yuan, J.M.: Experimental remote preparation of arbitrary photon polarization states. Phys. Rev. A 76, 022308 (2007)

    Article  ADS  Google Scholar 

  55. Wu, W., Liu, W.T., Ou, B.Q., Chen, P.X., Li, C.Z.: Remote state preparation with classically correlated state. Opt. Commun. 281, 1751 (2008)

    Article  ADS  Google Scholar 

  56. Barreiro, J.T., Wei, T.C., Kwiat, P.G.: Remote preparation of single-photon hybrid entangled and vector-polarization states. Phys. Rev. Lett. 105, 030407 (2010)

    Article  ADS  Google Scholar 

  57. Dai, H.Y., Chen, P.X.: Remote preparation of an entangled two-qubit state with three parties. Chin. Phys. 17, 27 (2008)

    Article  ADS  Google Scholar 

  58. Dong, W., Zha, X.W., Lan, Q.: Joint remote state preparation of arbitrary two-qubit state with six-qubit state. Opt. Commun. 284, 5853 (2011)

    Article  ADS  Google Scholar 

  59. Wang, Z.Y.: Controlled remote preparation of a two-qubit state via an asymmetric quantum channel. Commun. Theor. Phys. 55, 244 (2011)

    Article  ADS  Google Scholar 

  60. Zhan, Y.B., Ma, P.C.: Deterministic joint remote preparation of arbitrary two- and three-qubit entangled states. Quantum Inf. Process. 12, 997 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  61. Huang, L., Zhao, H.X.: Controlled remote state preparation of an arbitrary two-qubit state by using GHZ states. Int. J. Theor. Phys. 56, 678 (2017)

    Article  Google Scholar 

  62. Wei, J., Shi, L., Xu, Z., et al.: Probabilistic controlled remote state preparation of an arbitrary two-qubit state via partially entangled states with multi parties. Int. J. Quantum Inf. 16, 1850001 (2018)

    Article  MathSciNet  Google Scholar 

  63. An, N.B.: Joint remote preparation of a general two-qubit state. J. Phys. B 42, 125501 (2009)

    Article  ADS  Google Scholar 

  64. Guan, X.W., Chen, X.B., Yang, Y.X.: Controlled-joint remote preparation of an arbitrary two-qubit state via non-maximally entangled channel. Int. J. Theor. Phys. 51, 3575 (2012)

    Article  MathSciNet  Google Scholar 

  65. An, N.B., Bich, C.T.: Perfect controlled joint remote state preparation independent of entanglement degree of the quantum channel. Phys. Lett. A 378, 3582 (2014)

    Article  ADS  Google Scholar 

  66. Lu, C.Y., Zhou, X.Q., Guhne, O., Gao, W.B., Zhang, J., Yuan, Z.S., Goebel, A., Yang, T., Pan, J.W.: Experimental entanglement of six photons in graph states. Nat. Phys. 3, 91 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by The Foundational Research Funds for the Central Universities under Grants No. JB180111 and the Natural Science Foundation of Shannxi provincial of China Grants No. B01810014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Zhao, N. & Pei, C. Multicast-based multiparty remote state preparation schemes of two-qubit states. Quantum Inf Process 18, 319 (2019). https://doi.org/10.1007/s11128-019-2428-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2428-x

Keywords

Navigation