Skip to main content
Log in

CNOT gate on reverse photon modes in a ring cavity

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Photon modes of the reverse rotation in a ring QED cavity coupled with a single atom are considered. By applying the Schrieffer–Wolf transformation for the off-resonant light–atom interaction, an effective Hamiltonian of the photon modes evolution is obtained. Heisenberg equations for the input–output photon mode operators are written, and the expression for the wave function of the system is found. The analytical solution shows the condition of the control NOT quantum gate implementation on chiral photon modes. A possible on-chip experimental implementation and recommendations for the construction of an optical quantum computer using this gate are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409(6816), 46 (2001). https://doi.org/10.1038/35051009

    Article  ADS  Google Scholar 

  2. Niu, M.Y., Chuang, I.L., Shapiro, J.H.: Qudit-basis universal quantum computation using \(\chi \) (2) interactions. Phys. Rev. Lett. 120(16), 160502 (2018). https://doi.org/10.1103/physrevlett.120.160502

    Article  ADS  MathSciNet  Google Scholar 

  3. Duan, L.M., Kimble, H.J.: Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92(12), 127902 (2004). https://doi.org/10.1103/physrevlett.92.127902

    Article  ADS  Google Scholar 

  4. Wang, C., Zhang, Y., zhen Jiao, R., sheng Jin, G.: Universal quantum controlled phase gate on photonic qubits based on nitrogen vacancy centers and microcavity resonators. Opt. Express 21(16), 19252 (2013). https://doi.org/10.1364/oe.21.019252

    Article  ADS  Google Scholar 

  5. Ren, B.C., Deng, F.G.: Robust hyperparallel photonic quantum entangling gate with cavity QED. Opt. Express 25(10), 10863 (2017). https://doi.org/10.1364/oe.25.010863

    Article  ADS  Google Scholar 

  6. Wang, B., Duan, L.M.: Implementation scheme of controlled SWAP gates for quantum fingerprinting and photonic quantum computation. Phys. Rev. A 75(5), 050304 (2007). https://doi.org/10.1103/physreva.75.050304

    Article  ADS  Google Scholar 

  7. Koshino, K., Ishizaka, S., Nakamura, Y.: Deterministic photon-photonSWAPgate using a \({\Lambda }\) system. Phys. Rev. A 82(1), 010301 (2010). https://doi.org/10.1103/physreva.82.010301

    Article  ADS  Google Scholar 

  8. Tokunaga, Y., Koshino, K.: A photon–photon controlled-phase gate using a \(\varLambda \) system. In: 2015 European Conference on Lasers and Electro-Optics—European Quantum Electronics Conference (Optical Society of America, 2015), p. EBP7

  9. Wang, G.Y., Liu, Q., Wei, H.R., Li, T., Ai, Q., Deng, F.G.: Universal quantum gates for photon–atom hybrid systems assisted by bad cavities. Sci. Rep. 6(1), 24183 (2016). https://doi.org/10.1038/srep24183

    Article  ADS  Google Scholar 

  10. Wei, H.R., Deng, F.G.: Universal quantum gates for hybrid systems assisted by quantum dots inside double-sided optical microcavities. Phys. Rev. A 87(2), 022305 (2013). https://doi.org/10.1103/physreva.87.022305

    Article  ADS  Google Scholar 

  11. Wei, H.R., Deng, F.G.: Scalable photonic quantum computing assisted by quantum-dot spin in double-sided optical microcavity. Opt. Express 21(15), 17671 (2013). https://doi.org/10.1364/oe.21.017671

    Article  ADS  Google Scholar 

  12. Wei, H.R., Long, G.L.: Hybrid quantum gates between flying photon and diamond nitrogen-vacancy centers assisted by optical microcavities. Sci. Rep. 5(1), 12918 (2015). https://doi.org/10.1038/srep12918

    Article  ADS  Google Scholar 

  13. Liu, A.P., Cheng, L.Y., Guo, Q., Zhang, S., Zhao, M.X.: Universal quantum gates for hybrid system assisted by atomic ensembles embedded in double-sided optical cavities. Sci. Rep. (2017). https://doi.org/10.1038/srep43675

  14. Hacker, B., Welte, S., Rempe, G., Ritter, S.: A photon–photon quantum gate based on a single atom in an optical resonator. Nature 536(7615), 193 (2016). https://doi.org/10.1038/nature18592

    Article  ADS  Google Scholar 

  15. Kim, H., Bose, R., Shen, T.C., Solomon, G.S., Waks, E.: A quantum logic gate between a solid-state quantum bit and a photon. Nat. Photonics 7(5), 373 (2013). https://doi.org/10.1038/nphoton.2013.48

    Article  ADS  Google Scholar 

  16. Schrieffer, J.R., Wolff, P.A.: Relation between the Anderson and Kondo Hamiltonians. Phys. Rev. 149(2), 491 (1966). https://doi.org/10.1103/physrev.149.491

    Article  ADS  Google Scholar 

  17. Seri, A., Corrielli, G., Lago-Rivera, D., Lenhard, A., de Riedmatten, H., Osellame, R., Mazzera, M.: Laser-written integrated platform for quantum storage of heralded single photons. Optica 5(8), 934 (2018). https://doi.org/10.1364/optica.5.000934

    Article  Google Scholar 

  18. Walls, D.F., Milburn, G.J.: In Quantum Optics, pp. 315–340. Springer. Berlin (1994). https://doi.org/10.1007/978-3-642-79504-6-17

  19. Yalla, R., Sadgrove, M., Nayak, K.P., Hakuta, K.: Cavity quantum electrodynamics on a nanofiber using a composite photonic crystal cavity. Phys. Rev. Lett. 113(14), 143601 (2014). https://doi.org/10.1103/physrevlett.113.143601

    Article  ADS  Google Scholar 

  20. Gorshkov, A.V., André, A., Fleischhauer, M., Sørensen, A.S., Lukin, M.D.: Universal approach to optimal photon storage in atomic media. Phys. Rev. Lett. 98(12), 123601 (2007). https://doi.org/10.1103/physrevlett.98.123601

    Article  ADS  Google Scholar 

  21. Savchenkov, A.A., Matsko, A.B., Ilchenko, V.S., Maleki, L.: Optical resonators with ten million finesse. Opt. Express 15(11), 6768 (2007). https://doi.org/10.1364/oe.15.006768

    Article  ADS  Google Scholar 

  22. Knight, J.C., Cheung, G., Jacques, F., Birks, T.A.: Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper. Opt. Lett. 22(15), 1129 (1997). https://doi.org/10.1364/ol.22.001129

    Article  ADS  Google Scholar 

  23. Kippenberg, T.J., Spillane, S.M., Vahala, K.J.: Modal coupling in traveling-wave resonators. Opt. Lett. 27(19), 1669 (2002). https://doi.org/10.1364/ol.27.001669

    Article  ADS  Google Scholar 

  24. Cai, M., Painter, O., Vahala, K.J.: Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system. Phys. Rev. Lett. 85(1), 74 (2000). https://doi.org/10.1103/physrevlett.85.74

    Article  ADS  Google Scholar 

  25. Anderson, M., Pavlov, N.G., Jost, J.D., Lihachev, G., Liu, J., Morais, T., Zervas, M., Gorodetsky, M.L., Kippenberg, T.J.: Highly efficient coupling of crystalline microresonators to integrated photonic waveguides. Opt. Lett. 43(9), 2106 (2018). https://doi.org/10.1364/ol.43.002106

    Article  ADS  Google Scholar 

  26. Minnegaliev, M.M., Dyakonov, I.V., Gerasimov, K.I., Kalinkin, A.A., Kulik, S.P., Moiseev, S.A., Saygin, M.Y., Urmancheev, R.V.: Observation and investigation of narrow optical transitions of \(167Er^{3+}\) ions in femtosecond laser printed waveguides in 7LiYF4 crystal. Laser Phys. Lett. 15(4), 045207 (2018). https://doi.org/10.1088/1612-202x/aaa6a6

    Article  ADS  Google Scholar 

  27. Chen, F., de Aldana, J.R.V.: Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining. Laser Photon. Rev. 8(2), 251 (2013). https://doi.org/10.1002/lpor.201300025

    Article  ADS  Google Scholar 

  28. Saglamyurek, E., Sinclair, N., Jin, J., Slater, J.A., Oblak, D., Bussières, F., George, M., Ricken, R., Sohler, W., Tittel, W.: Broadband waveguide quantum memory for entangled photons. Nature 469(7331), 512 (2011). https://doi.org/10.1038/nature09719

    Article  ADS  Google Scholar 

  29. Zhong, T., Kindem, J.M., Rochman, J., Faraon, A.: Interfacing broadband photonic qubits to on-chip cavity-protected rare-earth ensembles. Nat. Commun. 8, 14107 (2017). https://doi.org/10.1038/ncomms14107

    Article  ADS  Google Scholar 

  30. Minnegaliev, M.M., Gerasimov, K.I., Urmancheev, R.V., Moiseev, S.A.: Quantum memory in the revival of silenced echo scheme in an optical resonator. Quantum Electron. 48(10), 894 (2018). https://doi.org/10.1070/qel16762

    Article  ADS  Google Scholar 

  31. Andrianov, S.N., Moiseev, S.A.: Nanophotonic quantum computer based on atomic quantum transistor. Quantum Electron. 45(10), 937 (2015). https://doi.org/10.1070/qe2015v045n10abeh015740

    Article  ADS  Google Scholar 

  32. Moiseev, S.A., Andrianov, S.N.: A quantum computer on the basis of an atomic quantum transistor with built-in quantum memory. Opt. Spectrosc. 121(6), 886 (2016). https://doi.org/10.1134/s0030400x16120195

    Article  ADS  Google Scholar 

  33. Simon, C., de Riedmatten, H., Afzelius, M.: Temporally multiplexed quantum repeaters with atomic gases. Phys. Rev. A 82(1), 010304(R) (2010). https://doi.org/10.1103/physreva.82.010304

    Article  ADS  Google Scholar 

  34. Moiseev, S.A., Andrianov, S.N., Gubaidullin, F.F.: Efficient multimode quantum memory based on photon echo in an optimal QED cavity. Phys. Rev. A 82(2), 022311 (2010). https://doi.org/10.1103/physreva.82.022311

    Article  ADS  Google Scholar 

  35. Sabooni, M., Li, Q., Kröll, S., Rippe, L.: Efficient quantum memory using a weakly absorbing sample. Phys. Rev. Lett. 110(13), 133604 (2013). https://doi.org/10.1103/physrevlett.110.133604

    Article  ADS  Google Scholar 

  36. Jobez, P., Usmani, I., Timoney, N., Laplane, C., Gisin, N., Afzelius, M.: Cavity-enhanced storage in an optical spin-wave memory. New J. Phys. 16(8), 083005 (2014). https://doi.org/10.1088/1367-2630/16/8/083005

    Article  ADS  Google Scholar 

  37. Corrielli, G., Seri, A., Mazzera, M., Osellame, R., de Riedmatten, H.: Integrated optical memory based on laser-written waveguides. Phys. Rev. Appl. 5(5), 054013 (2016). https://doi.org/10.1103/physrevapplied.5.054013

    Article  ADS  Google Scholar 

  38. Dyakonov, I.V., Kalinkin, A.A., Saygin, M.Y., Abroskin, A.G., Radchenko, I.V., Straupe, S.S., Kulik, S.P.: Low-loss single-mode integrated waveguides in soda-lime glass. Appl. Phys. B 122(9), 245 (2016). https://doi.org/10.1007/s00340-016-6520-y

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey A. Moiseev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was funded by RFBR according to the research Project No. 17-02-00918.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrianov, S.N., Arslanov, N.M., Gerasimov, K.I. et al. CNOT gate on reverse photon modes in a ring cavity. Quantum Inf Process 18, 235 (2019). https://doi.org/10.1007/s11128-019-2345-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2345-z

Keywords

Navigation