Experimental demonstration of the violations of Mermin’s and Svetlichny’s inequalities for W and GHZ states

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Violation of Mermin’s and Svetlichny’s inequalities can rule out the predictions of local hidden variable theory and can confirm the existence of true nonlocal correlation for n-particle pure quantum systems (\({n} \ge 3\)). Here we demonstrate the experimental violation of the above inequalities for W and GHZ state. We use IBM’s five-qubit quantum computer for experimental implementation of these states and illustration of inequalities’ violations. Our results clearly show the violations of both Mermin’s and Svetlichny’s inequalities for W and GHZ states, respectively. Being a superconducting qubit-based quantum computer, the platform used here opens up the opportunity to explore multipartite inequalities which is beyond the reach of other existing technologies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    Bell, J.S.: On the Einstein Podolsky Rosen paradox. Physics 1, 195 (1964)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Clauser, J.F., Horne, M.A., Shimony, A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880 (1969)

    ADS  Article  Google Scholar 

  3. 3.

    Freedman, S.J., Clauser, J.F.: Experimental test of local hidden-variable theories. Phys. Rev. Lett. 28, 938 (1972)

    ADS  Article  Google Scholar 

  4. 4.

    Aspect, A., Grangier, P., Roger, G.: Experimental tests of realistic local theories via Bell’s theorem. Phys. Rev. Lett. 47, 460 (1981)

    ADS  Article  Google Scholar 

  5. 5.

    Hesen, B., et al.: Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682 (2015)

    ADS  Article  Google Scholar 

  6. 6.

    Brunner, N., Cavalcanti, D., Pironio, D., Scarani, V., Wehner, S.: Bell nonlocality. Rev. Mod. Phys. 86, 419 (2014)

    ADS  Article  Google Scholar 

  7. 7.

    Mermin, N.D.: Extreme quantum entanglement in a superposition of macroscopically distinct states. Phys. Rev. Lett. 65, 1838 (1990)

    ADS  MathSciNet  Article  Google Scholar 

  8. 8.

    Gisin, N., Bechmann-Pasquinucci, H.: Bell inequality, Bell states and maximally entangled states for n qubits. Phys. Lett. A 246, 1 (1998)

    ADS  MathSciNet  Article  Google Scholar 

  9. 9.

    Svetlichny, G.: Distinguishing three-body from two-body nonseparability by a Bell-type inequality. Phys. Rev. D 35, 3066 (1987)

    ADS  MathSciNet  Article  Google Scholar 

  10. 10.

    Seevinck, M., Svetlichny, G.: Bell-type inequalities for partial separability in N-particle systems and quantum mechanical violations. Phys. Rev. Lett. 89, 060401 (2002)

    ADS  MathSciNet  Article  Google Scholar 

  11. 11.

    Collins, D., Gisin, N., Popescu, S., Roberts, D., Scarani, V.: Bell-type inequalities to detect true n-body nonseparability. Phys. Rev. Lett. 88, 170405 (2002)

    ADS  Article  Google Scholar 

  12. 12.

    Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)

    ADS  MathSciNet  Article  Google Scholar 

  13. 13.

    Bouwmeester, D., Pan, J.W., Daniell, M., Weinfurter, H., Zeilinger, A.: Observation of three-photon Greenberger–Horne–Zeilinger entanglement. Phys. Rev. Lett. 82, 1345 (1999)

    ADS  MathSciNet  Article  Google Scholar 

  14. 14.

    Greenberger, D.M., Horne, M.A., Zeilinger, A.: Bell’s Theorem, Quantum Theory, and Conceptions of the Universe. Kluwer Academics, Dordrecht (1989)

    Google Scholar 

  15. 15.

    Jin, X.R., Ji, X., Zhang, Y.Q., Zhang, S., Hong, S.K., Yeon, K.H., Um, C.I.: Three-party quantum secure direct communication based on GHZ states. Phys. Lett. A 354, 67 (2006)

    ADS  Article  Google Scholar 

  16. 16.

    Moulick, S.R., Panigrahi, P.K.: Quantum cheques. Quantum Inf. Process. 15, 2475 (2016)

    ADS  MathSciNet  Article  Google Scholar 

  17. 17.

    Hao, J.C., Li, C.F., Guo, G.C.: Controlled dense coding using the Greenberger–Horne–Zeilinger state. Phys. Rev. A 63, 054301 (2001)

    ADS  Article  Google Scholar 

  18. 18.

    Joo, J., Park, Y.J., Oh, S., Kim, J.: Quantum teleportation via a W state. New J. Phys. 5, 136 (2003)

    ADS  Article  Google Scholar 

  19. 19.

    Wang, J., Zhang, Q., Tang, C.J.: Quantum secure communication scheme with W state. Commun. Theor. Phys. 48, 637 (2007)

    ADS  MathSciNet  Article  Google Scholar 

  20. 20.

    Bruß, D., DiVincenzo, D.P., Ekert, A., Fuchs, C.A., Macchiavello, C., Smolin, J.A.: Optimal universal and state-dependent quantum cloning. Phys. Rev. A 57, 2368 (1998)

    ADS  Article  Google Scholar 

  21. 21.

    Alsina, D., Latorre, J.I.: Experimental test of Mermin inequalities on a five-qubit quantum computer. Phys. Rev. A 94, 012314 (2016)

    ADS  Article  Google Scholar 

  22. 22.

    García-Martín, D., Sierra, G.: Five experimental tests on the 5-Qubit IBM quantum computer. J. Appl. Math. Phys. 6, 1460–1475 (2018)

    Article  Google Scholar 

  23. 23.

    Lavoie, J., Kaltenbaek, R., Resch, K.J.: Experimental violation of Svetlichny’s inequality. New J. Phys. 11, 073051 (2009)

    ADS  Article  Google Scholar 

  24. 24.

    Mahesh, T.S., Sudheer, C.S., Bhosale, U.T.: Quantum Correlations in NMR Systems. Lectures on General Quantum Correlations and their Applications, p. 499. Springer, Cham (2017)

    Google Scholar 

  25. 25.

    IBM Quantum Experience. research.ibm.com/quantum. Accessed 24 May 2019

  26. 26.

    Behera, B.K., Banerjee, A., Panigrahi, P.K.: Experimental realization of quantum cheque using a five-qubit quantum computer. Quantum Inf. Process. 16, 312 (2017)

    ADS  MathSciNet  Article  Google Scholar 

  27. 27.

    Wootton, J.R.: Demonstrating non-Abelian braiding of surface code defects in a five qubit experiment. Quantum Sci. Technol. 2, 015006 (2017)

    ADS  Article  Google Scholar 

  28. 28.

    Gangopadhyay, S., Behera, B.K., Panigrahi, P.K.: Generalization and demonstration of an entanglement-based Deutsch–Jozsa-like algorithm using a 5-qubit quantum computer. Quantum Inf. Process. 17, 160 (2018)

    ADS  MathSciNet  Article  Google Scholar 

  29. 29.

    Zhukov, A.A., Remizov, S.V., Pogosov, W.V., Lozovik, Y.E.: Algorithmic simulation of far-from-equilibrium dynamics using quantum computer. Quantum Inf. Process. 17, 223 (2018)

    ADS  MathSciNet  Article  Google Scholar 

  30. 30.

    Yalcınkaya, I., Gedik, Z.: Optimization and experimental realization of the quantum permutation algorithm. Phys. Rev. A 96, 062339 (2017)

    ADS  Article  Google Scholar 

  31. 31.

    Coles, P.J. et al.: Quantum algorithm implementations for beginners. arXiv:1804.03719 (2018)

  32. 32.

    Srinivasan, K., Satyajit, S., Behera, B.K., Panigrahi, P.K.: Efficient quantum algorithm for solving travelling salesman problem: an IBM quantum experience. arXiv:1805.10928 (2018)

  33. 33.

    Ghosh, D., Agarwal, A., Pandey, P., Behera, B.K., Panigrahi, P.K.: Automated error correction in IBM quantum computer and explicit generalization. Quantum Inf. Process. 17, 153 (2018)

    ADS  MathSciNet  Article  Google Scholar 

  34. 34.

    Satyajit, S., Srinivasan, K., Behera, B.K., Panigrahi, P.K.: Nondestructive discrimination of a new family of highly entangled states in IBM quantum computer. Quantum Inf. Process. 17, 212 (2018)

    ADS  MathSciNet  Article  Google Scholar 

  35. 35.

    Behera, B.K., Seth, S., Das, A., Panigrahi, P.K.: Demonstration of entanglement purification and swapping protocol to design quantum repeater in IBM quantum computer. Quantum Inf. Process. 18, 108 (2019)

    ADS  Article  Google Scholar 

  36. 36.

    Cervera-Lierta, A.: Exact Ising model simulation on a quantum computer. Quantum 2, 114 (2018)

    Article  Google Scholar 

  37. 37.

    Hegade, N.N., Behera, B.K, Panigrahi, P.K.: Experimental demonstration of quantum tunneling in IBM quantum computer. arXiv:1712.07326 (2019)

  38. 38.

    Pokharel, B., Anand, N., Fortman, B., Lidar, D.: Demonstration of fidelity improvement using dynamical decoupling with superconducting qubits. arXiv:1807.08768 (2018)

  39. 39.

    Cereceda, J.L.: Three-particle entanglement versus three-particle nonlocality. Phys. Rev. A 66, 024102 (2002)

    ADS  MathSciNet  Article  Google Scholar 

  40. 40.

    Parit, M.K., Sharma, K.K., Mitra, C., Panigrahi, P.K.: Quantum correlations in two-level atomic system over Herring–Flicker coupling. arXiv:1807.01805 (2018)

Download references

Acknowledgements

We acknowledge IBM team for providing free access to their cloud computing platform. The work presented here is only of the authors and does not include any technical contribution of IBM team.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bikash K. Behera.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Swain, M., Rai, A., Behera, B.K. et al. Experimental demonstration of the violations of Mermin’s and Svetlichny’s inequalities for W and GHZ states. Quantum Inf Process 18, 218 (2019). https://doi.org/10.1007/s11128-019-2331-5

Download citation

Keywords

  • IBM quantum experience
  • Mermin’s inequality
  • Svetlichny’s inequality