Skip to main content
Log in

Fault-tolerant quantum computation with non-binary systems

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we present the stabilizer transformation formalism under measurements in q-ary systems where q is an odd prime power. Through a clever use of sequential stabilizer manipulations, we can implement several q-ary logical gates in a fault-tolerant way. Furthermore, a randomized fault-tolerant code conversion procedure between arbitrary non-binary stabilizer codes is proposed, in which descendant ancillary qudits are required with growing dimension of systems. Finally, we adapt the idea of stabilizer transformation in the construction of q-ary entanglement-assisted quantum stabilizer codes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Preskill, J.: Fault-tolerant quantum computation. In: Lo, H.-K., Popescu, S., Spiller, T. (eds.) Introduction to Quantum Computation and Information. World Scientific, Singapore (1998)

    MATH  Google Scholar 

  2. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  3. Campbell, E.T., Terhal, B.M., Vuillot, C.: Roads towards fault-tolerant universal quantum computation. Nature 549(7671), 172 (2017)

    Article  ADS  Google Scholar 

  4. Knill, E., Laflamme, R., Zurek, W.: Threshold accuracy for quantum computation. arXiv preprint arXiv: quant-ph/9610011 (1996)

  5. Bombin, H., Martin-Delgado, M.A.: Topological computation without braiding. Phys. Rev. Lett. 98(16), 160502 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Katzgraber, H.G., Bombin, H., Andrist, R.S., Martin-delgado, M.A.: Topological color codes on Union Jack lattices: a stable implementation of the whole Clifford group. Physics 81(1), 116–116 (2010)

    Google Scholar 

  7. Adam, P., Reichardt, B.W.: Universal fault-tolerant quantum computation with only transversal gates and error correction. Phys. Rev. Lett. 111(9), 090505 (2013)

    Article  Google Scholar 

  8. Anderson, J.T., Duclos-Cianci, G., Poulin, D.: Fault-tolerant conversion between the Steane and Reed-Muller quantum codes. Phys. Rev. Lett. 113(8), 080501 (2014)

    Article  ADS  Google Scholar 

  9. Kubica, A., Beverland, M.E.: Universal transversal gates with color codes: a simplified approach. Phys. Rev. A 91(3), 032330 (2015)

    Article  ADS  Google Scholar 

  10. Bombin, H.: Gauge color codes: optimal transversal gates and gauge fixing in topological stabilizer codes. New J. Phys. 17(8), 083002 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  11. Eastin, B., Knill, E.: Restrictions on transversal encoded quantum gate sets. Phys. Rev. Lett. 102(11), 110502 (2009)

    Article  ADS  Google Scholar 

  12. Bravyi, S., Kitaev, A.: Universal quantum computation with ideal Clifford gates and noisy ancillas. Physics 71(2), 159–159 (2004)

    MathSciNet  MATH  Google Scholar 

  13. Poulsen, N.H., Friis, N., Briegel, H.J.: Fault-tolerant interface between quantum memories and quantum processors. Nat. Commun. 8(1), 1321 (2017)

    Article  ADS  Google Scholar 

  14. Hill, C.D., Fowler, A.G., Wang, D.S., Hollenberg, L.C.L.: Fault-tolerant quantum error correction code conversion. Quantum Inf. Comput. 13(5), 439–451 (2011)

    MathSciNet  Google Scholar 

  15. Hwang, Y., Choi, B.S., Ko, Youngchai, H.J.: Fault-tolerant conversion between stabilizer codes by Clifford operations. arXiv preprint arXiv: 1511.02596 (2015)

  16. Colladay, K.R., Mueller, E.J.: Rewiring stabilizer codes. New J. Phys. 20(8), 083030 (2018)

    Article  ADS  Google Scholar 

  17. Huang, C., Newman, M.: Fault-tolerant switching between generic stabilizer codes. arXiv preprint arXiv: 1709.09282 (2017)

  18. Ashikhmin, A., Knill, E.: Nonbinary quantum stabilizer codes. IEEE Trans Inf Theory 47(7), 3065–3072 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ketkar, A., Klappenecker, A., Kumar, S., Sarvepalli, P.K.: Nonbinary stabilizer codes over finite fields. IEEE Trans Inf Theory 52(11), 4892–4914 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rains, E.M.: Nonbinary quantum codes. IEEE Trans Inf Theory 45(6), 1827–1832 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Grassl, M., Rötteler, M., Beth, T.: Efficient quantum circuits for non-qubit quantum error-correcting codes. Int J Found Comput Sci 14(05), 757–775 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Luo, L., Ma, Z., Wei, Z., Leng, R.: Non-binary entanglement-assisted quantum stabilizer codes. Sci China Inf Sci 60(4), 42501 (2017)

    Article  Google Scholar 

  23. Gottesman, D.: Fault-tolerant quantum computation with higher-dimensional systems. In: Williams, C.P. (ed.) Quantum Computing and Quantum Communications, pp. 302–313. Springer, Berlin (1999)

    Chapter  MATH  Google Scholar 

  24. Howard, M., Vala, J.: Qudit versions of the qubit \(\pi /8\) gate. Phys. Rev. A 86(10), 022316 (2012)

    ADS  Google Scholar 

  25. Anwar, H.: Towards fault-tolerant quantum computation with higher-dimensional systems. Ph.D. thesis, University College London (2014)

  26. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 58(301), 13–30 (1963)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, L., Ma, Z. Fault-tolerant quantum computation with non-binary systems. Quantum Inf Process 18, 188 (2019). https://doi.org/10.1007/s11128-019-2307-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2307-5

Keywords

Navigation