Skip to main content
Log in

Connection of coherence measure and unitary evolutions

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We show that, given a single-qubit state, the maximal possible value of disturbance induced by unitary evolution with respect to time coincides with the \(bona\, fide\) coherence measure based on skew information up to a constant. This establishes the exact relation between the impact power of Hamiltonian and the coherence measure subject to the eigenbasis of Hamiltonian. We present closed formula of impact power of Hamiltonian, thus equivalently giving an evaluation of coherence measure for any generic basis. In particular, for \(2\times N\) quantum system, we prove that the impact power of local Hamiltonian is equal to the partial coherence based on skew information. By employing the special form of the corresponding unitary operator, we derive the lower and upper bounds of impact power for any Hamiltonian, which in turn provides the allowed amount of coherence for arbitrary generic basis. Finally, for two-qubit pure state, we demonstrate that there is an interesting connection between partial coherence and CHSH inequality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photon. 5, 222 (2011)

    Article  ADS  Google Scholar 

  3. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)

    Article  ADS  Google Scholar 

  4. Demkowicz-Dobrzański, R., Koodyński, J., Gută, M.: The elusive Heisenberg limit in quantum-enhanced metrology. Nat. Commun. 3, 1063 (2012)

    Article  ADS  Google Scholar 

  5. Tóth, G., Apellaniz, I.: Quantum metrology from a quantum information science perspective. J. Phys. A 47, 424006 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  6. Girolami, D., Souza, A.M., Giovannetti, V., Tufarelli, T., Filgueiras, J.G., Sarthour, R.S., Soares-Pinto, D.O., Oliveira, I.S., Adesso, G.: Quantum discord determines the interferometric power of quantum states. Phys. Rev. Lett. 112, 210401 (2014)

    Article  ADS  Google Scholar 

  7. Åberg, J.: Catalytic coherence. Phys. Rev. Lett. 113, 150402 (2014)

    Article  ADS  Google Scholar 

  8. Narasimhachar, V., Gour, G.: Low-temperature thermodynamics with quantum coherence. arXiv:1409.7740v2

  9. Ćwikliński, P., Studziński, M., Horodecki, M., Oppenheim, J.: Towards fully quantum second laws of thermodynamics: limitations on the evolution of quantum coherences. arXiv:1405.5029v2

  10. Lostaglio, M., Jennings, D., Rudolph, T.: Thermodynamic laws beyond free energy relations. arXiv:1405.2188v2

  11. Lostaglio, M., Korzekwa, K., Jennings, D., Rudolph, T.: Quantum coherence, time-translation symmetry and thermodynamics. arXiv:1410.4572v1

  12. Vazquez, H., Skouta, R., Schneebeli, S., Kamenetska, M., Breslow, R., Venkataraman, L., Hybertsen, M.: Probing the conductance superposition law in single-molecule circuits with parallel paths. Nat. Nanotech. 7, 663 (2012)

    Article  ADS  Google Scholar 

  13. Karlström, O., Linke, H., Karlström, G., Wacker, A.: Increasing thermoelectric performance using coherent transport. Phys. Rev. B 84, 113415 (2011)

    Article  ADS  Google Scholar 

  14. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  15. Horodecki, M., Oppenheim, J.: (Quantumness in the context of) resource theories. Int. J. Mod. Phys. B 27, 1345019 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  16. Coecke, B., Fritz, T., Spekkens, R.W.: A mathematical theory of resources. Inf. Comput. 250, 59–86 (2016)

    Article  MathSciNet  Google Scholar 

  17. Brandão, F.G.S.L., Gour, G.: Reversible framework for quantum resource theories. Phys. Rev. Lett. 115, 070503 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  18. Liu, Z.W., Hu, X., Lloyd, S.: Resource destroying maps. Phys. Rev. Lett. 118, 060502 (2017)

    Article  ADS  Google Scholar 

  19. Winter, A., Yang, D.: Operational resource theory of coherence. Phys. Rev. Lett. 116, 120404 (2016)

    Article  ADS  Google Scholar 

  20. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  21. Marvian, I., Spekkens, R.W.: How to quantify coherence: distinguishing speakable and unspeakable notions. Phys. Rev. A 94, 052324 (2016)

    Article  ADS  Google Scholar 

  22. Matera, J.M., Egloff, D., Killoran, N., Plenio, M.B.: Coherent control of quantum systems as a resource theory. Quantum Sci. Technol. 1, 01LT01 (2016)

    Article  Google Scholar 

  23. Chitambar, E., Gour, G.: Are incoherent operations physically consistent?–A critical examination of incoherent operations. Phys. Rev. Lett. 117, 030401 (2016)

    Article  ADS  Google Scholar 

  24. Chitambar, E., Gour, G.: Comparison of incoherent operations and measures of coherence. Phys. Rev. A 94, 052336 (2016)

    Article  ADS  Google Scholar 

  25. Napoli, C., Bromley, T.R., Cianciaruso, M., Piani, M., Johnston, N., Adesso, G.: Robustness of coherence: an operational and observable measure of quantum coherence. Phys. Rev. Lett. 116, 150502 (2016)

    Article  ADS  Google Scholar 

  26. Piani, M., Cianciaruso, M., Bromley, T.R., Napoli, C., Johnston, N., Adesso, G.: Robustness of asymmetry and coherence of quantum states. Phys. Rev. A 93, 042107 (2016)

    Article  ADS  Google Scholar 

  27. Rana, S., Parashar, P., Winter, A., Lewenstein, M.: Logarithmic coherence: operational interpretation of \(l_1\)-norm coherence. Phys. Rev. A 96, 052336 (2016)

    Article  ADS  Google Scholar 

  28. Yadin, B., Vedral, V.: General framework for quantum macroscopicity in terms of coherence. Phys. Rev. A 93, 022122 (2016)

    Article  ADS  Google Scholar 

  29. Yu, X.D., Zhang, D.J., Xu, G.F., Tong, D.M.: An alternative framework for quantifying coherence. Phys. Rev. A 94, 060302(R) (2016)

    Article  ADS  Google Scholar 

  30. Zhu, H., Ma, Z., Cao, Z., Fei, S., Vedral, V.: Operational one-to-one mapping between coherence and entanglement measures. Phys. Rev. A 96, 032316 (2017)

    Article  ADS  Google Scholar 

  31. Yu, C.: Quantum coherence via skew information and its polygamy. Phys. Rev. A 95, 042337 (2017)

    Article  ADS  Google Scholar 

  32. Luo, S., Sun, Y.: Partial coherence with application to the monotonicity problem of coherence involving skew information. Phys. Rev. A 96, 022136 (2017)

    Article  ADS  Google Scholar 

  33. Bu, K., Singh, U., Fei, S., Pati, A.K., Wu, J.: Maximum relative entropy of coherence: an operational coherence measure. Phys. Rev. Lett. 119, 150405 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  34. Mani, A., Karimipour, V.: Cohering power of quantum operations. Phys. Rev. A 92, 032331 (2015)

    Article  ADS  Google Scholar 

  35. Bromley, T.R., Cianciaruso, M., Adesso, G.: Frozen quantum coherence. Phys. Rev. Lett. 114, 210401 (2015)

    Article  ADS  Google Scholar 

  36. Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  37. Streltsov, A., Chitambar, E., Rana, S., Bera, M.N., Winter, A., Lewenstein, M.: Entanglement and coherence in quantum state merging. Phys. Rev. Lett. 116, 240405 (2016)

    Article  ADS  Google Scholar 

  38. Xi, Z.J., Li, Y.M., Fan, H.: Quantum coherence and correlations in quantum system. Sci. Rep. 5, 10922 (2015)

    Article  ADS  Google Scholar 

  39. Guo, Y., Goswami, S.: Discordlike correlation of bipartite coherence. Phys. Rev. A 95, 062340 (2017)

    Article  ADS  Google Scholar 

  40. Ma, J., Yadin, B., Girolami, D., Vedral, V., Gu, M.: Converting coherence to quantum correlations. Phys. Rev. Lett. 116, 160407 (2016)

    Article  ADS  Google Scholar 

  41. Mondal, D., Pramanik, T., Pati, A.K.: Nonlocal advantage of quantum coherence. Phys. Rev. A 95, 010301 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  42. Streltsov, A., Adesso, G., Plenio, M.B.: Colloquium: quantum coherence as a resource. Rev. Mod. Phys. 89, 041003 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  43. Hu, M.L., Shen, S.Q., Fan, H.: Maximum coherence in the optimal basis. Phys. Rev. A 96, 052309 (2017)

    Article  ADS  Google Scholar 

  44. Yao, Y., Dong, G.H., Ge, L., Li, M., Sun, C.P.: Maximal coherence in generic basis. Phys. Rev. A 94, 062339 (2016)

    Article  ADS  Google Scholar 

  45. Yu, C., Yang, S., Guo, B.: Total quantum coherence and its applications. Quantum Inf. Process. 15, 3773–3784 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  46. Fu, L.: Nonlocal effect of a bipartite system induced by local cyclic operation. Europhys. Lett. 75, 1 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  47. Gharibian, S., Kampermann, H., Bruß, D.: On global effects caused by locally noneffective unitary operations. J. Quantum Inf. Comput. 9, 1013 (2009)

    MathSciNet  MATH  Google Scholar 

  48. Gharibian, S.: Quantifying nonclassicality with local unitary operations. Phys. Rev. A 86, 042106 (2012)

    Article  ADS  Google Scholar 

  49. Giampaolo, S.M., Streltsov, A., Roga, W., Bruß, D., Illuminati, F.: Quantifying nonclassicality: global impact of local unitary evolutions. Phys. Rev. A 87, 012313 (2013)

    Article  ADS  Google Scholar 

  50. Streltsov, A., Kampermann, H., Wölk, S., Gessner, M., Bruß, D.: Maximal coherence and the resource theory of purity. N. J. Phys. 20, 053058 (2016)

    Article  Google Scholar 

  51. Chang, L., Luo, S.: Remedying the local ancilla problem with geometric discord. Phys. Rev. A 87, 062303 (2013)

    Article  ADS  Google Scholar 

  52. Dakic, B., Vedral, V., Brukner, C.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)

    Article  ADS  Google Scholar 

  53. Girolami, D.: Observable measure of quantum coherence in finite dimensional systems. Phys. Rev. Lett. 113, 170401 (2014)

    Article  ADS  Google Scholar 

  54. Horodecki, R., Horodecki, P., Horodecki, M.: Violating Bell inequality by mixed spin-\(\frac{1}{2}\) states: necessary and sufficient condition. Phys. Lett. A 200, 340 (1995)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was supported by the Fundamental Research Funds for the Central Universities No. 18CX02023A, 18CX02035A, the Grants from the NSFC (11775306, 11571220), the Key Project of Scientific Research Innovation Foundation of Shanghai Municipal Education Commission (13ZZ080).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Shen, SQ., Li, M. et al. Connection of coherence measure and unitary evolutions. Quantum Inf Process 18, 189 (2019). https://doi.org/10.1007/s11128-019-2304-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2304-8

Keywords

Navigation