Skip to main content
Log in

On mutually unbiased unitary bases in prime-dimensional Hilbert spaces

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Akin to the idea of complete sets of mutually unbiased bases for prime-dimensional Hilbert spaces, \(\mathcal {H}_d\), we study its analogue for a d-dimensional subspace of \(M (d,\mathbb {C})\), i.e. mutually unbiased unitary bases (MUUBs) comprising of unitary operators. We note an obvious isomorphism between the vector spaces and beyond that, we define a relevant monoid structure for \(\mathcal {H}_d\) isomorphic to one for the subspace of \(M (d,\mathbb {C})\). This provides us not only with the maximal number of such MUUBs, but also a recipe for its construction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. This can be understood as a composition of the isomorphism from \(\mathcal {H}_d\) to \(\mathbb {C}^d\) and from the latter to \(M_s\).

  2. We should note that the word ‘corresponding’ is used to highlight the simple fact that one cannot determine the nature of entanglement simply based on states in \( \text {End}(\mathbb {C}^d)\).

References

  1. Schwinger, J.: Unitary operator bases. Proc. Nat. Acad. Sci. USA 46, 570–579 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  2. Alltop, W.O.: Complex sequences with low periodic correlations. IEEE Trans. Inf. Theory 26, 350–354 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  3. Ivanović, I.D.: Geometrical description of quantal state determination. J. Phys. A 14, 3241–3245 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  4. Wootters, W.K., Fields, B.D.: Optimal state-determination by mutually unbiased measurements. Ann. Phys. 191, 363–381 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  5. Bandyopadhyay, S., Boykin, P.O., Roychowdhury, V., Vatan, F.: A new proof of the existence of mutually unbiased bases. Algorithmica 34, 512–528 (2002)

    Article  MathSciNet  Google Scholar 

  6. Durt, T., Bengtsson, I., Englert, B.-G., Zyczkowski, K.: On mutually unbiased bases. Int. J. Quantum Inf. 8, 535–640 (2010)

    Article  Google Scholar 

  7. Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, 175–179 (1984)

  8. Shaari, J.S., Nasir, R.N.M., Mancini, S.: Mutually unbiased unitary bases. Phys. Rev. A 94, 052328 (2016)

    Article  ADS  Google Scholar 

  9. Scott, A.J.: Optimizing quantum process tomography with unitary 2-designs. J. Phys. A 41, 055308 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  10. Bengtsson, I.: Three ways to look at mutually unbiased bases. arXiv:quant-ph/0610216 (2006)

  11. Tadej, W., Życzkowski, K.: A concise guide to complex Hadamard matrices. Open Syst. Inf. Dyn. 13, 133–177 (2006)

    Article  MathSciNet  Google Scholar 

  12. D’Ariano, G.M., Presti, P.L., Sacchi, M.F.: Bell measurements and observables. Phys. Lett. A 272, 32 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  13. D’Ariano, G.M., Presti, P.L., Paris, M.G.A.: Using entanglement improves the precision of quantum measurements. Phys. Rev. Lett. 87, 270404 (2001)

    Article  Google Scholar 

  14. D’Ariano, G.M., Presti, P.L., Paris, M.G.A.: Improved discrimination of unitary transformations by entangled probes. J. Opt. B 4, S273 (2002)

    Article  Google Scholar 

  15. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  16. Hall, J.: Mutually unbiased bases and related structures. Ph.D. thesis, RMIT University (2011)

  17. Sych, D., Leuchs, G.: A complete basis of generalized Bell states. New J. Phys. 11, 013006 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesni Shamsul Shaari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A The monoid \((\mathcal {H}_d,\bullet ,|0\rangle )\)

We show that \((\mathcal {H}_d,\bullet ,|0\rangle )\) is a monoid. We begin first by showing that \(\bullet \) is closed on \(\mathcal {H}_d\).

\( \vert \varphi \rangle \bullet \vert \phi \rangle =\sum _{i} a_i \vert i \rangle \bullet \sum _{j} b_j \vert j \rangle =\sum _{m} \alpha _m \vert m \rangle \). Note that \(\alpha _m \in \mathbb {C}~, \forall ~m\) , therefore \(\sum _{m} \alpha _m \vert m \rangle \in \mathcal {H}_d\), hence the set is closed under the operation \(\bullet \).

We next show that the operation is associative on \(\mathcal {H}_d\).

$$\begin{aligned} (\vert \varphi \rangle \bullet \vert \phi \rangle ) \bullet \vert \varPhi \rangle =\sum _{m} \alpha _m \vert m \rangle \bullet \sum _{k} c_k \vert k \rangle \end{aligned}$$
(28)

where \(\alpha _m=\sum _{i,j} a_i b_j ~and~ i \oplus j =m\). Then,

$$\begin{aligned} \sum _{m} \alpha _m \vert m \rangle \bullet \sum _{k} c_k \vert k \rangle =\sum _{n} \beta _n \vert n \rangle \end{aligned}$$
(29)

where \(\beta _n=\sum _{m,k} \alpha _m c_k ~ and~ m \oplus k =n\) or \(\beta _n=\sum _{i,j,k} a_i b_j c_k\) with \(i \oplus j \oplus k =n\).

$$\begin{aligned} \sum _{n} \beta _n \vert n \rangle&=\sum _{i, j, k} a_i b_j c_k \vert i \oplus j \oplus k \rangle \nonumber \\&=\sum _{i,j,k} ( a_i)( b_j c_k) \vert i \oplus j \oplus k \rangle \nonumber \\&=\left( \sum _{i} a_i \vert i \rangle \right) \bullet \left( \sum _{j,k} b_j c_k \vert j \oplus k \rangle \right) \nonumber \\&=\vert \varphi \rangle \bullet (\vert \phi \rangle \bullet \vert \varPhi \rangle ) \end{aligned}$$
(30)

where \(\vert \phi \rangle \bullet \vert \varPhi \rangle =\sum _{j,k} b_j c_k \vert j \oplus k \rangle \). Hence, \(\bullet \) is associative.

To complete the requirement of being a monoid, we show the existence of an identity in \(\mathcal {H}_d\) with respect to the operation \(\bullet \). Let \(\vert e \rangle =\sum _{i} a_i \vert i \rangle \) and \(\sum _{i,j} a_i b_j \vert i \oplus j \rangle \) and \( i \oplus j=m\). Then, \(\vert e \rangle \) is an identity if

$$\begin{aligned} a_i = {\left\{ \begin{array}{ll} 1 &{} \text {if }i=0 \\ 0 &{} \text {if }i \ne 0 ~. \end{array}\right. } \end{aligned}$$

This effectively means \(|e\rangle =|0\rangle \). We write it in the above form to ensure that the operation with any state in \(\mathcal {H}_d\) follows from the definition for \(\bullet \). Thus \(\vert e \rangle \bullet \sum _j b_j \vert j \rangle =\sum _{i} a_i \vert i \rangle \bullet \sum _j b_j \vert j \rangle = \vert 0 \rangle \bullet \sum _j b_j \vert j \rangle =\sum _j b_j \vert 0 \oplus j \rangle =\sum _m b_m \vert m \rangle \). On the other hand, \(\sum _j b_j \vert j \rangle \bullet \vert e \rangle =\sum _j b_j \vert j \rangle \bullet \sum _{i} a_i \vert i \rangle =\sum _j b_j \vert j \rangle \bullet \vert 0 \rangle =\sum _j b_j \vert j \oplus 0 \rangle = \sum _m b_m \vert m \rangle \). Hence \(\vert e \rangle =\vert 0 \rangle \) is an identity element of \(\mathcal {H}_d\).

In the following, we show that the operation is also distributive on \(\mathcal {H}_d\) with respect to vector sum. Consider

$$\begin{aligned} \vert \varphi \rangle \bullet (\vert \phi \rangle + \vert \varPhi \rangle )&=\sum _{i} a_i \vert i \rangle \bullet \left( \sum _{j} b_j \vert j \rangle + \sum _{j} c_j \vert j \rangle \right) =\sum _{s} \omega _s \vert s \rangle \end{aligned}$$
(31)

where \(\omega _s=\sum _{i,j} a_i (b_j + c_j)\) and \(i \oplus j = s\).

$$\begin{aligned} \sum _{s} \omega _s \vert s \rangle&=\sum _{i,j} a_i (b_j + c_j) \vert i \oplus j \rangle \nonumber \\&=\sum _{i,j} a_i b_j \vert i \oplus j \rangle + \sum _{i,j} a_i c_j \vert i \oplus j \rangle \nonumber \\&=\left( \sum _{i} a_i \vert i \rangle \bullet \sum _{j} b_j \vert b_j \rangle \right) +\left( \sum _{i} a_i \vert i \rangle \bullet \sum _{j} c_j \vert j \rangle \right) \nonumber \\&=(\vert \varphi \rangle \bullet \vert \phi \rangle ) +( \vert \varphi \rangle \bullet \vert \varPhi \rangle )~. \end{aligned}$$
(32)

Thus, \(\bullet \) is distributive.

Appendix B

As noted from the text, the subspace spanned by \(\{|\mathcal {U}_0\rangle ,\ldots ,|\mathcal {U}_{d-1}\rangle \}\) is isomorphic to \(\mathbb {C}^d\) and a basis for the latter can be written as \(\{|i_U\rangle \}_{i=0}^{d-1}\). Hence, \(\{|i_U\rangle \langle j_U|~|~i,j=0,\ldots ,d-1\}\) is an orthonormal basis for the \(d^2\) space of \(\text {End}(\mathbb {C}^d)\). In order to ascertain if any of these states, \(\rho \in \text {End}(\mathbb {C}^d)\) is (actually) a MES, we need to reconsider the subsystems, of the state. In this case, the subsystems are two d-dimensional states and we refer to the subsystems later as systems 1 and 2. Let us thus consider the entangled state from the Choi isomorphism from the unitary \(U_i\) given as \(|\mathcal {U}_i\rangle \),

$$\begin{aligned} |\mathcal {U}_i\rangle =\left( \sum _{m}\sum _n \langle n|U_i|m\rangle |m\rangle |n\rangle \right) /\sqrt{d}~. \end{aligned}$$
(33)

The set \(\{|\mathcal {U}_i\rangle \langle \mathcal {U}_j|~|~i,j=0,\ldots ,d-1\}\) is an orthonormal basis for a \(d^2\) subspace of \(\text {End}(\mathbb {C}^d\otimes \mathbb {C}^d)\). Let us call this subspace \(M_{d^2}\).

We show that a function \(F:\text {End}\left( \mathbb {C}^d\right) \rightarrow M_{d^2}\) with the rule

$$\begin{aligned} F\left( \sum _{i,j}a_{i,j}|i_U\rangle \langle j_U|\right) =\sum _{i,j}a_{i,j}|\mathcal {U}_i\rangle \langle \mathcal {U}_j| \end{aligned}$$
(34)

is an isomorphism. Note that F is injective,

$$\begin{aligned}&F\left( \sum _{i,j}a_{i,j}|i_U\rangle \langle j_U|\right) =F\left( \sum _{i,j}b_{i,j}|i_U\rangle \langle j_U|\right) \nonumber \\&\quad \Rightarrow \sum _{i,j}a_{i,j}|\mathcal {U}_i\rangle \langle \mathcal {U}_j|=\sum _{i,j}b_{i,j}|\mathcal {U}_i\rangle \langle \mathcal {U}_j|\nonumber \\&\quad \therefore \sum _{i,j}a_{i,j}|\mathcal {U}_i\rangle \langle \mathcal {U}_j|-\sum _{i,j}b_{i,j}|\mathcal {U}_i\rangle \langle \mathcal {U}_j|=0\nonumber \\&\quad \therefore \forall i,j,~a_{i,j}=b_{i,j}\Rightarrow \sum _{i,j}a_{i,j}|i_U\rangle \langle j_U|=\sum _{i,j}b_{i,j}|i_U\rangle \langle j_U|~. \end{aligned}$$
(35)

The surjectiveness of F is obvious (any element in \(M_{d^2}\) can be written as \(\sum _{i,j}k_{i,j}|\mathcal {U}_i\rangle \langle \mathcal {U}_j|=F\left( \sum _{i,j}k_{i,j}|i_U\rangle \langle j_U|\right) \). To show the linearity of F;

$$\begin{aligned}&F\left( \alpha \sum _{i,j}a_{i,j}|i_U\rangle \langle j_U|+\sum _{i,j}b_{i,j}|i_U\rangle \langle j_U|\right) \nonumber \\&\quad =F\left( \sum _{i,j}(\alpha a_{i,j}+b_{i,j})|i_U\rangle \langle j_U|\right) =\sum _{i,j}(\alpha a_{i,j}+b_{i,j})|\mathcal {U}_i\rangle \langle \mathcal {U}_j|\nonumber \\&\quad =\sum _{i,j}\alpha a_{i,j}|\mathcal {U}_i\rangle \langle \mathcal {U}_j|+b_{i,j}|\mathcal {U}_i\rangle \langle \mathcal {U}_j|\nonumber \\&\quad =\alpha F\left( \sum _{i,j}a_{i,j}|i_U\rangle \langle j_U|\right) +F\left( \sum _{i,j}b_{i,j}|i_U\rangle \langle j_U|\right) ~. \end{aligned}$$
(36)

Let \(\rho \in \text {End}(\mathbb {C}^d)\) and \(\rho _M=F(\rho )\in \text {End}(\mathbb {C}^d\otimes \mathbb {C}^d)\). It is easy to see that to ascertain whether \(\rho \) corresponds to some MES, we consider if \(\text {Tr}_1(\rho _M)=\text {Tr}_2(\rho _M)=\mathbb {I}_d/d\) where the subscripts 1 and 2 refer to the subsystems the partial trace is taken over. Let us refer to the space \(H_{M}\) as the smallest subspace of Hermitian operators \(M_{d^2}\) which contains all MES in \(M_{d^2}\). Following [9], we can say that all MES in \(M_{d^2}\) is a convex set of the subspace

$$\begin{aligned} H_M=\{J\in \text {End}(\mathbb {C}^d\otimes \mathbb {C}^d)~|~\text {Tr}_1(J)=\text {Tr}_2(J)= \text {Tr}(J)\mathbb {I}_d/d\}~. \end{aligned}$$
(37)

Note that every element in \(M_{d^2}\) can be written as a \(\sum r_{ik}\lambda _i\otimes \lambda _k\) where \(\{\lambda _i\}_{i=0}^{d^2-1}\) is an orthonormal Hermitian operator basis for \(\text {End}(\mathbb {C}^d)\) with \(\lambda _0=\mathbb {I}/\sqrt{d}\) and \(r_{ik}\in \mathbb {R}\). The subspace \(H_M\), however, requires \(r_{k0}=r_{0k}=0\) which implies that every element in \(H_M\) is also an element in \(M_{d^2}\), but not vice versa. Thus \(H_M\) is a proper subset of \(M_{d^2}\); and \(\text {dim}~H_M<d^2\).

Finally, given the isomorphism F, we can identify the smallest subspace of all operators in \(\text {End}(\mathbb {C}^d)\) containing operators corresponding to MES, call it \(H_{mes}\), with dimensionality equal to \(\text {dim}~H_M\).

Appendix C

Let d be some prime number, \(a_1,a_2=0,1,\ldots ,d-1\) and p be integers. Let \(l=a_1p\mod d=a_2p\mod d\). There exists integers \(n_1,n_2\) such that,

$$\begin{aligned} a_1 p-l&=n_1 d\nonumber \\ a_2 p-l&=n_2 d~. \end{aligned}$$
(38)

With \(p\ne 0\), we have

$$\begin{aligned} (a_1-a_2)=\left( \dfrac{n_1-n_2}{p}\right) d~. \end{aligned}$$
(39)

We shall show that Eq. (39) is only true when \(a_1=a_2\). Let us first consider the case \(p > |n_1-n_2| \), implying that \((n_1-n_2)/p\) is a fraction. As d is prime greater than 2, therefore \(a_1- a_2\) is a fraction. However, as \(a_1, a_2 \in [0, d-1]\), therefore \(a_1-a_2\) cannot be a fraction. Thus, p cannot be greater than \(|n_1-n_2|\).

Now, If \(p \le |n_1-n_2|,\) then this implies that \(|a_1-a_2| \ge d\). However, note that as \(|a_1-a_2|< d-1\), hence p is neither less than nor equal to \(|n_1-n_2|\). Thus Eq. (39) is true if \(a_1-a_2=n_1-n_2=0\). In turn, if \(a_1\ne a_2\), therefore we have \(a_1p\mod d\ne a_2p\mod d\). Further to that, \(l=ap\mod d\) is defined for all values of \(a=0,\ldots ,d-1\), thus \(l=0,\ldots ,d-1\).

Appendix D

In showing that \((\mathbb {X}_d^b\mathbb {Z}_d^a)^i(\mathbb {X}_d^b\mathbb {Z}_d^a)^j=(\mathbb {X}_d^bZ_d^a)^{i\oplus j}\), we first need to prove the following identity,

$$\begin{aligned} (\mathbb {X}_d^b\mathbb {Z}_d^a)^n=\omega ^{ab(n^2-n)/2} \mathbb {X}_d^{bn}\mathbb {Z}_d^{an}~. \end{aligned}$$
(40)

The proof is by induction. It is obvious that for \(n=1\)

$$\begin{aligned} (\mathbb {X}_d^b\mathbb {Z}_d^a)^1=\omega ^{ab(1^2-1)/2}\mathbb {X}_d^{b} \mathbb {Z}_d^{a}=\mathbb {X}_d^b\mathbb {Z}_d^a~. \end{aligned}$$
(41)

Now assume this is true for \(n=k\)

$$\begin{aligned} (\mathbb {X}_d^b\mathbb {Z}_d^a)^k=\omega ^{ab(k^2-k)/2}\mathbb {X}_d^{bk} \mathbb {Z}_d^{ak}~, \end{aligned}$$
(42)

we need to determine for \(n=k+1\),

$$\begin{aligned} (\mathbb {X}_d^b\mathbb {Z}_d^a)^{k+1}=\omega ^{ab(k^2-k)/2}\mathbb {X}_d^{bk} \mathbb {Z}_d^{ak}\mathbb {X}^b\mathbb {Z}_d^a~. \end{aligned}$$
(43)

As we swap the positions of \(\mathbb {X}_d^b\) and \(\mathbb {Z}_d^ak\), we will make a total number of abk swaps and thus introduce the term \(\omega ^{abk}\). Hence

$$\begin{aligned} (\mathbb {X}_d^b\mathbb {Z}_d^a)^{k+1}&=\omega ^{ab(k^2-k)/2}\omega ^{abk} \mathbb {X}_d^{b(k+1)}\mathbb {Z}_d^{a(k+1)}\nonumber \\&=\omega ^{ab(k^2-k+2k)/2}\mathbb {X}_d^{b(k+1)}\mathbb {Z}_d^{a(k+1)}\nonumber \\&=\omega ^{ab[(k+1)^2-(k+1)]/2}\mathbb {X}_d^{b(k+1)}\mathbb {Z}_d^{a(k+1)}~. \end{aligned}$$
(44)

Now, if \(n=d>2\) (the case for \(d=2\) is trivial), we have

$$\begin{aligned} (\mathbb {X}_d^b\mathbb {Z}_d^a)^d=\omega ^{ab(d^2-d)/2}\mathbb {X}_d^{bd} \mathbb {Z}_d^{ad}~. \end{aligned}$$
(45)

As \(ab(d^2-d)/2=abd(d-1)/2\), and \(d-1\) is an even number (because d is prime), hence \(abd(d-1)/2\) is some positive multiple, M, of d or \(abd(d-1)/2=Md\)). Note that \(\omega ^{Md}=(\omega ^d)^{M}=1\). Thus

$$\begin{aligned} (\mathbb {X}_d^b\mathbb {Z}_d^a)^d=\mathbb {X}_d^{bd}\mathbb {Z}_d^{ad}= (\mathbb {X}_d^{d})^b(\mathbb {Z}_d^{d})^a=\mathbb {I} \end{aligned}$$
(46)

as \(\mathbb {X}_d^b=\mathbb {Z}_d^a=\mathbb {I}.\) Noting that, \(i+j=Nd+(i\oplus j)\), for some positive integer N, \((\mathbb {X}_d^b\mathbb {Z}_d^a)^i(\mathbb {X}_d^b\mathbb {Z}_d^a)^j=(\mathbb {X}_d^bZ_d^a)^{i\oplus j}\) follows straightforwardly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasir, R.N.M., Shaari, J.S. & Mancini, S. On mutually unbiased unitary bases in prime-dimensional Hilbert spaces. Quantum Inf Process 18, 178 (2019). https://doi.org/10.1007/s11128-019-2298-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2298-2

Keywords

Navigation