Skip to main content

Dimensionality distinguishers

Abstract

The celebrated Clauser, Horne, Shimony and Holt (CHSH) game model helps to perform the security analysis of many two-player quantum protocols. This game specifies two Boolean functions whose outputs have to be computed to determine success or failure. It also specifies the measurement bases used by each player. In this paper, we generalize the CHSH game by considering all possible non-constant Boolean functions and all possible measurement basis (up to certain precision). Based on the success probability computation, we construct several equivalence classes and show how they can be used to generate three classes of dimension distinguishers. In particular, we demonstrate how to distinguish between dimensions 2 and 3 for a special form of maximally entangled state.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  2. Bennett, C.H., Wiesner, S.J.: Communication via one-and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69(20), 2881 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  3. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  4. Bose, S., Vedral, V., Knight, P.L.: Multiparticle generalization of entanglement swapping. Phys. Rev. A 57(2), 822 (1998)

    Article  ADS  Google Scholar 

  5. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81(2), 865 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  6. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47(10), 777 (1935)

    Article  ADS  Google Scholar 

  7. Bell, J.S.: On the einstein podolsky rosen paradox. Phys. Phys. Fiz. 1(3), 195 (1964)

    MathSciNet  Google Scholar 

  8. Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23(15), 880 (1969)

    Article  ADS  Google Scholar 

  9. Cirel’son, B.S.: Quantum generalizations of Bell’s inequality. Lett. Math. Phys. 4(2), 93–100 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  10. Grangier, P., Roger, G., Aspect, A.: Experimental evidence for a photon anticorrelation effect on a beam splitter: a new light on single-photon interferences. Europhys. Lett. 1(4), 173 (1986)

    Article  ADS  Google Scholar 

  11. Popescu, S., Rohrlich, D.: Quantum nonlocality as an axiom. Found. Phys. 24(3), 379–385 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  12. http://northala.net/qit/handouts/2016-Handout2.pdf

  13. https://sergworks.wordpress.com/2016/10/26/chsh-game-in-detail/

  14. Buhrman, H., Massar, S.: Causality and Tsirelson’s bounds. Phys. Rev. A 72(5), 052103 (2005)

    Article  ADS  Google Scholar 

  15. Toner, B.: Monogamy of non-local quantum correlations. Proc. R. Soc. A Math. Phys. Eng. Sci. 465(2101), 59–69 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  16. Pawowski, M.: Security proof for cryptographic protocols based only on the monogamy of Bells inequality violations. Phys. Rev. A 82(3), 032313 (2010)

    Article  ADS  Google Scholar 

  17. Reichardt, B.W., Unger, F., Vazirani, U.: Classical command of quantum systems. Nature 496(7446), 456 (2013)

    Article  ADS  Google Scholar 

  18. Brunner, N., Linden, N.: Connection between Bell nonlocality and Bayesian game theory. Nat. Commun. 4, 2057 (2013)

    Article  ADS  Google Scholar 

  19. Bavarian, M., Shor, P. W.: Information causality, Szemerdi–Trotter and algebraic variants of CHSH. In: Proceedings of the 2015 Conference on Innovations in Theoretical Computer Science, ACM, pp 123–132 (2015)

  20. Brunner, N., Pironio, S., Acin, A., Gisin, N., Méthot, A.A., Scarani, V.: Testing the dimension of Hilbert spaces. Phys. Rev. Lett. 100(21), 210503 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  21. Pál, K.F., Vértesi, T.: Efficiency of higher-dimensional Hilbert spaces for the violation of Bell inequalities. Phys. Rev. A 77(4), 042105 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  22. Pérez-García, D., Wolf, M.M., Palazuelos, C., Villanueva, I., Junge, M.: Unbounded violation of tripartite Bell inequalities. Commun. Math. Phys. 279(2), 455–486 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  23. Vértesi, T., Pironio, S., Brunner, N.: Closing the detection loophole in Bell experiments using qudits. Phys. Rev. Lett. 104(6), 060401 (2010)

    Article  ADS  Google Scholar 

  24. Vértesi, T., Pál, K.F.: Generalized Clauser-Horne-Shimony-Holt inequalities maximally violated by higher-dimensional systems. Phys. Rev. A 77(4), 042106 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  25. Junge, M., Palazuelos, C., Pérez-García, D., Villanueva, I., Wolf, M.M.: Operator space theory: a natural framework for Bell inequalities. Phys. Rev. Lett. 104(17), 170405 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  26. Briët, J., Buhrman, H., Toner, B.: A generalized Grothendieck inequality and nonlocal correlations that require high entanglement. Commun. Math. Phys. 305(3), 827–843 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  27. Wehner, S., Christandl, M., Doherty, A.C.: Lower bound on the dimension of a quantum system given measured data. Phys. Rev. A 78(6), 062112 (2008)

    Article  ADS  Google Scholar 

  28. Gallego, R., Brunner, N., Hadley, C., Acín, A.: Device-independent tests of classical and quantum dimensions. Phys. Rev. Lett. 105(23), 230501 (2010)

    Article  ADS  Google Scholar 

  29. Junge, M., Palazuelos, C.: Large violation of Bell inequalities with low entanglement. Commun. Math. Phys. 306(3), 695 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  30. Ahrens, J., Badziag, P., Cabello, A., Bourennane, M.: Experimental device-independent tests of classical and quantum dimensions. Nat. Phys. 8(8), 592 (2012)

    Article  Google Scholar 

  31. Hendrych, M., Gallego, R., Mic̆da, M., Brunner, N., Acín, A., Torres, J.P.: Experimental estimation of the dimension of classical and quantum systems. Nat. Phys. 8(8), 588 (2012)

    Article  Google Scholar 

  32. Ahrens, J., Badziag, P., Cabello, A., Bourennane, M.: Experimental device-independent tests of classical and quantum dimensions. Nat. Phys. 8(8), 592 (2012)

    Article  Google Scholar 

  33. Brunner, N., Navascués, M., Vértesi, T.: Dimension witnesses and quantum state discrimination. Phys. Rev. Lett. 110(15), 150501 (2013)

    Article  ADS  Google Scholar 

  34. Bowles, J., Quintino, M.T., Brunner, N.: Certifying the dimension of classical and quantum systems in a prepare-and-measure scenario with independent devices. Phys. Rev. Lett. 112(14), 140407 (2014)

    Article  ADS  Google Scholar 

  35. Maitra, A., Adhikari, B., Adhikari, S.: Proposal for dimensionality testing in QPQ. Quantum Inf. Comput. 18(13&14), 1125–1142 (2018)

    MathSciNet  Google Scholar 

  36. Paul, G., Ray, S.: On data complexity of distinguishing attacks versus message recovery attacks on stream ciphers. Des. Codes Cryptogr. 86, 1211–1247 (2018)

    Article  MathSciNet  Google Scholar 

  37. Basak, J., Maitra, S.: ClauserHorneShimonyHolt versus three-party pseudo-telepathy: on the optimal number of samples in device-independent quantum private query. Quantum Inf. Process 17(4), 77 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Goutam Paul.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Das, N., Paul, G. & Maitra, A. Dimensionality distinguishers. Quantum Inf Process 18, 171 (2019). https://doi.org/10.1007/s11128-019-2279-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2279-5

Keywords

  • CHSH
  • Dimensionality testing
  • Distinguisher
  • Entanglement
  • Success probability