Abstract
The celebrated Clauser, Horne, Shimony and Holt (CHSH) game model helps to perform the security analysis of many two-player quantum protocols. This game specifies two Boolean functions whose outputs have to be computed to determine success or failure. It also specifies the measurement bases used by each player. In this paper, we generalize the CHSH game by considering all possible non-constant Boolean functions and all possible measurement basis (up to certain precision). Based on the success probability computation, we construct several equivalence classes and show how they can be used to generate three classes of dimension distinguishers. In particular, we demonstrate how to distinguish between dimensions 2 and 3 for a special form of maximally entangled state.
This is a preview of subscription content, access via your institution.

References
Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661 (1991)
Bennett, C.H., Wiesner, S.J.: Communication via one-and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69(20), 2881 (1992)
Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)
Bose, S., Vedral, V., Knight, P.L.: Multiparticle generalization of entanglement swapping. Phys. Rev. A 57(2), 822 (1998)
Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81(2), 865 (2009)
Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47(10), 777 (1935)
Bell, J.S.: On the einstein podolsky rosen paradox. Phys. Phys. Fiz. 1(3), 195 (1964)
Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23(15), 880 (1969)
Cirel’son, B.S.: Quantum generalizations of Bell’s inequality. Lett. Math. Phys. 4(2), 93–100 (1980)
Grangier, P., Roger, G., Aspect, A.: Experimental evidence for a photon anticorrelation effect on a beam splitter: a new light on single-photon interferences. Europhys. Lett. 1(4), 173 (1986)
Popescu, S., Rohrlich, D.: Quantum nonlocality as an axiom. Found. Phys. 24(3), 379–385 (1994)
https://sergworks.wordpress.com/2016/10/26/chsh-game-in-detail/
Buhrman, H., Massar, S.: Causality and Tsirelson’s bounds. Phys. Rev. A 72(5), 052103 (2005)
Toner, B.: Monogamy of non-local quantum correlations. Proc. R. Soc. A Math. Phys. Eng. Sci. 465(2101), 59–69 (2008)
Pawowski, M.: Security proof for cryptographic protocols based only on the monogamy of Bells inequality violations. Phys. Rev. A 82(3), 032313 (2010)
Reichardt, B.W., Unger, F., Vazirani, U.: Classical command of quantum systems. Nature 496(7446), 456 (2013)
Brunner, N., Linden, N.: Connection between Bell nonlocality and Bayesian game theory. Nat. Commun. 4, 2057 (2013)
Bavarian, M., Shor, P. W.: Information causality, Szemerdi–Trotter and algebraic variants of CHSH. In: Proceedings of the 2015 Conference on Innovations in Theoretical Computer Science, ACM, pp 123–132 (2015)
Brunner, N., Pironio, S., Acin, A., Gisin, N., Méthot, A.A., Scarani, V.: Testing the dimension of Hilbert spaces. Phys. Rev. Lett. 100(21), 210503 (2008)
Pál, K.F., Vértesi, T.: Efficiency of higher-dimensional Hilbert spaces for the violation of Bell inequalities. Phys. Rev. A 77(4), 042105 (2008)
Pérez-García, D., Wolf, M.M., Palazuelos, C., Villanueva, I., Junge, M.: Unbounded violation of tripartite Bell inequalities. Commun. Math. Phys. 279(2), 455–486 (2008)
Vértesi, T., Pironio, S., Brunner, N.: Closing the detection loophole in Bell experiments using qudits. Phys. Rev. Lett. 104(6), 060401 (2010)
Vértesi, T., Pál, K.F.: Generalized Clauser-Horne-Shimony-Holt inequalities maximally violated by higher-dimensional systems. Phys. Rev. A 77(4), 042106 (2008)
Junge, M., Palazuelos, C., Pérez-García, D., Villanueva, I., Wolf, M.M.: Operator space theory: a natural framework for Bell inequalities. Phys. Rev. Lett. 104(17), 170405 (2010)
Briët, J., Buhrman, H., Toner, B.: A generalized Grothendieck inequality and nonlocal correlations that require high entanglement. Commun. Math. Phys. 305(3), 827–843 (2011)
Wehner, S., Christandl, M., Doherty, A.C.: Lower bound on the dimension of a quantum system given measured data. Phys. Rev. A 78(6), 062112 (2008)
Gallego, R., Brunner, N., Hadley, C., Acín, A.: Device-independent tests of classical and quantum dimensions. Phys. Rev. Lett. 105(23), 230501 (2010)
Junge, M., Palazuelos, C.: Large violation of Bell inequalities with low entanglement. Commun. Math. Phys. 306(3), 695 (2011)
Ahrens, J., Badziag, P., Cabello, A., Bourennane, M.: Experimental device-independent tests of classical and quantum dimensions. Nat. Phys. 8(8), 592 (2012)
Hendrych, M., Gallego, R., Mic̆da, M., Brunner, N., Acín, A., Torres, J.P.: Experimental estimation of the dimension of classical and quantum systems. Nat. Phys. 8(8), 588 (2012)
Ahrens, J., Badziag, P., Cabello, A., Bourennane, M.: Experimental device-independent tests of classical and quantum dimensions. Nat. Phys. 8(8), 592 (2012)
Brunner, N., Navascués, M., Vértesi, T.: Dimension witnesses and quantum state discrimination. Phys. Rev. Lett. 110(15), 150501 (2013)
Bowles, J., Quintino, M.T., Brunner, N.: Certifying the dimension of classical and quantum systems in a prepare-and-measure scenario with independent devices. Phys. Rev. Lett. 112(14), 140407 (2014)
Maitra, A., Adhikari, B., Adhikari, S.: Proposal for dimensionality testing in QPQ. Quantum Inf. Comput. 18(13&14), 1125–1142 (2018)
Paul, G., Ray, S.: On data complexity of distinguishing attacks versus message recovery attacks on stream ciphers. Des. Codes Cryptogr. 86, 1211–1247 (2018)
Basak, J., Maitra, S.: ClauserHorneShimonyHolt versus three-party pseudo-telepathy: on the optimal number of samples in device-independent quantum private query. Quantum Inf. Process 17(4), 77 (2018)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Das, N., Paul, G. & Maitra, A. Dimensionality distinguishers. Quantum Inf Process 18, 171 (2019). https://doi.org/10.1007/s11128-019-2279-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-019-2279-5
Keywords
- CHSH
- Dimensionality testing
- Distinguisher
- Entanglement
- Success probability