Skip to main content
Log in

Generation of new structured beams via spatially dependent transparency

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose a new scheme for generating new structured beams via spatially dependent transparency in a three-level atomic system. Due to the joint quantum interference induced by Laguerre–Gaussian (LG) field and constant coupling field, we can achieve different spatially dependent beams by measuring the probe absorption intensity profiles. The proposed scheme may provide potential applications in optics and novel quantum technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Xiao, M., Li, Y.Q., Jin, S.Z., Gea-Banacloche, J.: Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms. Phys. Rev. Lett. 74, 666 (1995)

    Article  ADS  Google Scholar 

  2. Harris, S.E., Field, J.E., Imamoğlu, A.: Nonlinear optical processes using electromagnetically induced transparency. Phys. Rev. Lett. 64, 1107 (1990)

    Article  ADS  Google Scholar 

  3. Harris, S.E., Field, J.E., Kasapi, A.: Dispersive properties of electromagnetically induced transparency. Phys. Rev. A 46, R29 (1992)

    Article  ADS  Google Scholar 

  4. Harris, S.E.: Electromagnetically induced transparency. Phys. Today 50, 36 (1997)

    Article  Google Scholar 

  5. Boller, K.J., Imamoğlu, A., Harris, S.E.: Observation of electromagnetically induced transparency. Phys. Rev. Lett. 66, 2593 (1991)

    Article  ADS  Google Scholar 

  6. Gea-Banacloche, J., Li, Y., Jin, S., Xiao, M.: Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment. Phys. Rev. A 51, 576 (1995)

    Article  ADS  Google Scholar 

  7. Fleischhauer, M., Lukin, M.D.: Dark-state polaritons in electromagnetically induced transparency. Phys. Rev. Lett. 84, 5094 (2000)

    Article  ADS  Google Scholar 

  8. Wu, Y., Yang, X.: Electromagnetically induced transparency in V-, Λ-, and cascade-type schemes beyond steady-state analysis. Phys. Rev. A 71, 053806 (2005)

    Article  ADS  Google Scholar 

  9. Eisaman, M.D., André, A., Massou, F., Fleischhauer, M., Zibrov, A.S., Lukin, M.D.: Electromagnetically induced transparency with tunable single-photon pulses. Nature (London) 438, 837 (2005)

    Article  ADS  Google Scholar 

  10. Li, H., Sautenkov, V.A., Rostovtsev, Y.V., Welch, G.R., Hemmer, P.R., Scully, M.O.: Electromagnetically induced transparency controlled by a microwave field. Phys. Rev. A 80, 92 (2009)

    Google Scholar 

  11. Fleischhauer, M., Imamoğlu, A., Marangos, J.P.: Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633 (2005)

    Article  ADS  Google Scholar 

  12. Yanik, M.F., Suh, W., Wang, Z., Fan, S.: Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency. Phys. Rev. Lett. 93, 233903 (2004)

    Article  ADS  Google Scholar 

  13. Heinze, G., Hubrich, C., Halfmann, T.: Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute. Phys. Rev. Lett. 111, 033601 (2013)

    Article  ADS  Google Scholar 

  14. Phillips, D.F., Fleischhauer, A., Mair, A., Walsworth, R.L., Lukin, M.: Storage of light in atomic vapor. Phys. Rev. Lett. 86, 783 (2001)

    Article  ADS  Google Scholar 

  15. Julsgaard, B., Sherson, J., Cirac, J.I., Fiurásek, J., Polzik, E.S.: Experimental demonstration of quantum memory for light. Nature (London) 432, 482 (2004)

    Article  ADS  Google Scholar 

  16. Lvovsky, A.I., Sanders, B.C., Tittel, W.: Optical quantum memory. Nat. Photon. 3, 706 (2009)

    Article  ADS  Google Scholar 

  17. Wu, Y., Saldana, J., Zhu, Y.: Large enhancement of four-wave mixing by suppression of photon absorption from electromagnetically induced transparency. Phys. Rev. A 67, 013811 (2003)

    Article  ADS  Google Scholar 

  18. Wu, Y., Yang, X.: Highly efficient four-wave mixing in double-Λ system in ultraslow propagation regime. Phys. Rev. A 70, 053818 (2004)

    Article  ADS  Google Scholar 

  19. Zhang, Y., Brown, A.W., Xiao, M.: Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows. Phys. Rev. Lett. 99, 123603 (2007)

    Article  ADS  Google Scholar 

  20. Zhang, Y., Khadka, U., Anderson, B., Xiao, M.: Temporal and spatial interference between four-wave mixing and six-wave mixing channels. Phys. Rev. Lett. 102, 013601 (2009)

    Article  ADS  Google Scholar 

  21. Wu, Y., Deng, L.: Ultraslow optical solitons in a cold four-state medium. Phys. Rev. Lett. 93, 143904 (2004)

    Article  ADS  Google Scholar 

  22. Wu, Y.: Two-color ultraslow optical solitons via four-wave mixing in cold-atom media. Phys. Rev. A 71, 053820 (2005)

    Article  ADS  Google Scholar 

  23. Joshi, A., Brown, A., Wang, H., Xiao, M.: Controlling optical bistability in a three-level atomic system. Phys. Rev. A 67, 041801(R) (2003)

    Article  ADS  Google Scholar 

  24. Radwell, N., Clark, T.W., Piccirillo, B., Barnett, S.M., Franke-Arnold, S.: Spatially dependent electromagnetically induced transparency. Phys. Rev. Lett. 114, 123603 (2015)

    Article  ADS  Google Scholar 

  25. Sharma, S., Dey, T.N.: Phase-induced transparency-mediated structured-beam generation in a closed-loop tripod configuration. Phys. Rev. A 96, 033811 (2017)

    Article  ADS  Google Scholar 

  26. Allen, L., Beijersbergen, M.W., Spreeuw, R.J.C., Woerdman, J.P.: Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 45, 8185 (1992)

    Article  ADS  Google Scholar 

  27. Han, L., Cao, M., Liu, R.F., Liu, H., Guo, W.G., Wei, D., Gao, S.Y., Zhang, P., Gao, H., Li, F.: Identifying the orbital angular momentum of light based on atomic ensembles. Eur. Lett. 99, 34003 (2012)

    Article  ADS  Google Scholar 

  28. Veissier, L., Nicolas, A., Giner, L., Maxein, D., Sheremet, A.S., Giacobino, E., Laurat, J.: Reversible optical memory for twisted photons. Opt. Lett. 38, 712 (2013)

    Article  ADS  Google Scholar 

  29. Ding, D.-S., Zhang, W., Zhou, Z.-Y., Shi, S., Xiang, G.-Y., Wang, X.-S., Jiang, Y.-K., Shi, B.-S., Guo, G.-C.: Quantum storage of orbital angular momentum entanglement in an atomic ensemble. Phys. Rev. Lett. 114, 050502 (2015)

    Article  ADS  Google Scholar 

  30. Steck, D.: 87Rb D line data (2015). http://steck.us/alkalidata

  31. Pugatch, R., Shuker, M., Firstenberg, O., Ron, A., Davidson, N.: Topological stability of stored optical vortices. Phys. Rev. Lett. 98, 203601 (2007)

    Article  ADS  Google Scholar 

  32. Moretti, D., Felinto, D., Tabosa, J.W.R.: Collapses and revivals of stored orbital angular momentum of light in a cold-atom ensemble. Phys. Rev. A 79, 023825 (2009)

    Article  ADS  Google Scholar 

  33. Yao, A.M., Padgett, M.J.: Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photon. 3, 161 (2011)

    Article  Google Scholar 

  34. Walker, G., Arnold, A.S., Franke-Arnold, S.: Trans-spectral orbital angular momentum transfer via four-wave mixing in Rb vapor. Phys. Rev. Lett. 108, 243601 (2012)

    Article  ADS  Google Scholar 

  35. Ding, D.-S., Zhou, Z.-Y., Shi, B.-S., Guo, G.-C.: Single-photon-level quantum image memory based on cold atomic ensembles. Nat. Commun. 4, 2527 (2013)

    Article  ADS  Google Scholar 

  36. Nicolas, A., Veissier, L., Giner, L., Giacobino, E., Maxein, D., Laurat, J.: A quantum memory for orbital angular momentum photonic qubits. Nat. Photon. 8, 234 (2014)

    Article  ADS  Google Scholar 

  37. Chen, Y.-Y., Feng, X.-L., Liu, C.: Generation of nonlinear vortex precursors. Phys. Rev. Lett. 117, 023901 (2016)

    Article  ADS  Google Scholar 

  38. Ruseckas, J., Juzeliūnas, G., Öhberg, P., Barnett, S.M.: Polarization rotation of slow light with orbital angular momentum in ultracold atomic gases. Phys. Rev. A 76, 053822 (2007)

    Article  ADS  Google Scholar 

  39. Hamedi, H.R., Ruseckas, J., Juzeliūnas, G.: Exchange of optical vortices using an electromagnetically-induced-transparency–based four-wave-mixing setup. Phys. Rev. A 98, 013840 (2018)

    Article  ADS  Google Scholar 

  40. Hamedi, H.R., Viaceslav, K., Ruseckas, J., Gediminas, J.: Azimuthal modulation of electromagnetically induce transparency using structured light. Opt. Express 26, 28249 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 11674002) and the State Scholarship Fund of China Scholarship Council (CSC) as a visiting scholar at University of Nottingham (File No. 201806505020). The authors acknowledge helpful advice and comments from the referees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiping Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, J., Wang, Z. & Yu, B. Generation of new structured beams via spatially dependent transparency. Quantum Inf Process 18, 160 (2019). https://doi.org/10.1007/s11128-019-2278-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2278-6

Keywords

Navigation