Advertisement

Quantum Zeno effect by incomplete measurements

  • Manchao Zhang
  • Chunwang Wu
  • Yi Xie
  • Wei Wu
  • Pingxing ChenEmail author
Article
  • 74 Downloads

Abstract

A measurement process needs a time duration in many actual cases, such as the measurement on atomic system by the electron shelving technique. If this timescale is deficient, the measurement would be incomplete. Here, we investigate the quantum Zeno effect by incomplete measurements. We show that an efficient freeze of the quantum state by incomplete measurements is available. And interestingly, this state freeze can be more significant than that obtained in the complete measurement case if the parameters of incomplete measurements are properly set.

Keywords

Quantum Zeno effect Quantum measurements Atomic system 

Notes

Acknowledgements

This work is supported by the National Basic Research Program of China under Grant No. 2016YFA0301903; the National Natural Science Foundation of China under Grants No. 11174370, No. 11304387, No. 61632021, No. 11305262, No. 11574398 and No. 61205108; and the Research Plan Project of National University of Defense Technology under Grant No. ZK16-03-04.

References

  1. 1.
    Misra, B., Sudarshan, E.C.G.: The Zeno’s paradox in quantum theory. J. Math. Phys. 18, 756 (1977)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Kofman, A.G., Kurizki, G.: Frequent observations accelerate decay: the anti-Zeno effect. Z. Fur Naturforschung A. 56, 83 (2001)ADSGoogle Scholar
  3. 3.
    Itano, W.M., Heinzen, D.J., Bollinger, J.J., Wineland, D.J.: Quantum Zeno effect. Phys. Rev. A. 41, 2295 (1990)ADSCrossRefGoogle Scholar
  4. 4.
    Peres, A., Ron, A.: Incomplete “collapse” and partial quantum Zeno effect. Phys. Rev. A. 42, 5720 (1990)ADSCrossRefGoogle Scholar
  5. 5.
    Block, E., Berman, P.R.: Quantum Zeno effect and quantum Zeno paradox in atomic physics. Phys. Rev. A. 44, 1466 (1991)ADSCrossRefGoogle Scholar
  6. 6.
    Wang, X.B., You, J.Q., Nori, F.: Quantum entanglement via two-qubit quantum Zeno dynamics. Phys. Rev. A. 77, 3195 (2008)Google Scholar
  7. 7.
    Alfredo, L.: Zeno and anti-Zeno effects in two-level systems. Phys. Rev. A. 67, 062113 (2003)CrossRefGoogle Scholar
  8. 8.
    Kofman, A.G., Kurizki, G.: Acceleration of quantum decay processes by frequent observations. Nature. 405, 546 (2000)ADSCrossRefGoogle Scholar
  9. 9.
    Facchi, P., Nakazato, H., Pascazio, S.: From the quantum zeno to the inverse quantum zeno effect. Phys. Rev. Lett. 86, 2699 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    Cao, X., Ai, Q.: Sun Chang Pu and Nori Franco, The transition from quantum Zeno to anti-Zeno effects for a qubit in a cavity by varying the cavity frequency. Phys. Lett. A. 376, 349 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    Chaudhry, A.Z., Gong, J.: Zeno and anti-Zeno effects on dephasing. Phys. Rev. A. 90, 165 (2014)Google Scholar
  12. 12.
    Wu, W., Lin, H.Q.: Quantum Zeno and anti-Zeno effects in quantum dissipative systems. Phys. Rev. A. 95, 042132 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    Adam, Z.C.: A general framework for the Quantum Zeno and anti-Zeno effects. Sci. Rep. 6, 29497 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    Zhou, Z., Lv, Z., Zheng, H., et al.: Quantum Zeno and anti-Zeno effects in open quantum systems. Phys. Rev. A. 96(3), 032101 (2017)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Fischer, M.C., Gutierrez-Medina, B., Raizen, M.G.: Observation of the quantum zeno and anti-zeno effects in an unstable system. Phys. Rev. Lett. 87, 040402 (2001)ADSCrossRefGoogle Scholar
  16. 16.
    Barone, A., Kurizki, G., Kofman, A.G.: Dynamical control of macroscopic quantum tunneling. Phys. Rev. Lett. 92, 200403 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    Chen, P.W., Tsai, D.B., Bennett, P.: Quantum Zeno and anti-Zeno effect of a nanomechanical resonator measured by a point contact. Phys. Rev. B. 81, 115307 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    Keisuke, F., Katsuji, Y.: Anti-Zeno effect for quantum transport in disordered systems. Phys. Rev. A. 82, 5929 (2010)Google Scholar
  19. 19.
    Harrington, P.M., Monroe, J.T., Murch, K.W.: Quantum Zeno effects from measurement controlled qubit-bath interactions. Phys. Rev. Lett. 118, 240401 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    Zhang, M.C., Wei, W., He, L.Z., Xie, Y., ChunWang, W., Li, Q., Chen, P.X.: Demonstration of quantum anti-Zeno effect with a single trapped ion. Chin. Phys. B. 27(9), 090305 (2018)ADSCrossRefGoogle Scholar
  21. 21.
    Koshino, K., Shimizu, A.: Quantum Zeno effect by general measurements. Phys. Rep. 412(4), 191 (2005)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Koshino, K., Shimizu, A.: Quantum Zeno effect for exponentially decaying systems. Phys. Rev. Lett. 92(3), 030401 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    Koshino, K.: Quantum anti-Zeno effect by false measurements. Phys. Rev. Lett. 93(3), 030401 (2004)ADSCrossRefGoogle Scholar
  24. 24.
    David, L., Martinmartinez, E., Kempf, A.: Perfect Zeno effect through imperfect measurements at a finite frequency. Phys. Rev. A. 91, 022106 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    Aharonov, Y., Albert, D.Z., Vaidman, L.: How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60, 1351 (1988)ADSCrossRefGoogle Scholar
  26. 26.
    Nagourney, W., Sandberg, J., Dehmelt, H.: Shelved optical electron amplifier: observation of quantum jumps. Phys. Rev. Lett. 56, 2797 (1986)ADSCrossRefGoogle Scholar
  27. 27.
    Sasura, M., Buzek, V.: Cold trapped ions as quantum information processors. Opt. Acta Int. J. Opt. 49, 1593 (2002)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Dalibard, J.: Wave-function approach to dissipative processes in quantum optics. Phys. Rev. Lett. 68(5), 580 (1992)ADSCrossRefGoogle Scholar
  29. 29.
    Plenio, M.B., Knight, P.L.: The quantum-jump approach to dissipative dynamics in quantum optics. Rev. Mod. Phys. 70(1), 101 (1997)ADSCrossRefGoogle Scholar
  30. 30.
    Katz, N., Ansmann, M., Bialczak, R.C., et al.: Coherent state evolution in a superconducting qubit from partial-collapse measurement. Science 312(5779), 1498 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    Katz, N., Neeley, M., Ansmann, M., et al.: Reversal of the weak measurement of a quantum state in a superconducting phase qubit. Phys. Rev. Lett. 101(20), 200401 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    Ai, Q., Xu, D., Yi, S., Kofman, A.G., Sun, C.P., Nori, F.: Quantum anti-Zeno effect without wave function reduction. Sci. Rep. 3, 1752 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsCollege of Liberal Arts and Sciences, National University of Defense TechnologyChangshaChina
  2. 2.State Key Laboratory of High Performance ComputingNational University of Defense TechnologyChangshaChina

Personalised recommendations