Protection of quantum dialogue affected by quantum field

Abstract

In this paper, we present a secure quantum dialogue protocol (QDP) by using three-qubit GHZ states, which has high capacity and efficiency. However, a real quantum system unavoidably interacts with its environment, which results in the decoherence phenomenon. Decoherence will restrain the effective application of quantum communication protocols. Thus, in this article we also investigate the QDP affected by fluctuating massless scalar field, and how to protect the QDP in noisy environment. The master equation that governs the noisy QDP evolution is firstly derived. Then, we find that the success probability (SP) of QDP decreases exponentially with evolution time, and with a perfectly reflecting boundary SP can be effectively protected and modulated.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Processing of IEEE International Conference on Computers, System and Signal Processing, pp. 175–179 (1984)

  2. 2.

    Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441 (2000)

    Article  ADS  Google Scholar 

  3. 3.

    Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68, 557 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. 4.

    Deng, F.G., Long, G.L.: Controlled order rearrangement encryption for quantum key distribution. Phys. Rev. A 68, 042315 (2003)

    Article  ADS  Google Scholar 

  5. 5.

    Deng, F.G., Long, G.L.: Bidirectional quantum key distribution protocol with practical faint laser pulses. Phys. Rev. A 70, 012311 (2004)

    Article  ADS  Google Scholar 

  6. 6.

    Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78, 022321 (2008)

    Article  ADS  Google Scholar 

  7. 7.

    Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)

    Article  ADS  Google Scholar 

  8. 8.

    Huang, W., Su, Q., Xu, B.J., Liu, B., Fan, F., Jia, H.Y., Yang, Y.H.: Improved multiparty quantum key agreement in travelling mode. Sci. China Phys. Mech. Astron. 59, 120311 (2016)

    Article  Google Scholar 

  9. 9.

    Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  10. 10.

    Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  11. 11.

    Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    Article  ADS  Google Scholar 

  12. 12.

    Wang, C., et al.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)

    Article  ADS  Google Scholar 

  13. 13.

    Wang, C., Deng, F.G., Long, G.L.: Multi-step quantum secure direct communication using multi-particle Green–Horne–Zeilinger state. Opt. Commun. 253, 15 (2005)

    Article  ADS  Google Scholar 

  14. 14.

    Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y.: Quantum secure direct communication network with Einstein–Podolsky–Rosen pairs. Phys. Lett. A 359, 359 (2006)

    Article  ADS  MATH  Google Scholar 

  15. 15.

    Li, X.H., et al.: Quantum secure direct communication with quantum encryption based on pure entangled states. Chin. Phys. 16, 2149 (2007)

    Article  ADS  Google Scholar 

  16. 16.

    Shi, J., Gong, Y.X., Xu, P., Zhu, S.N., Zhang, Y.B.: Quantum secure direct communication by using three-dimensional hyperentanglement. Commun. Theor. Phys. 56, 831 (2011)

    Article  ADS  MATH  Google Scholar 

  17. 17.

    Wang, T.J., Li, T., Du, F.F., Deng, F.G.: High-capacity quantum secure direct communication based on quantum hyperdense coding with hyperentanglement. Chin. Phys. Lett. 28, 040305 (2011)

    Article  ADS  Google Scholar 

  18. 18.

    Gu, B., et al.: Robust quantum secure direct communication with a quantum one-time pad over a collective-noise channel. Sci. China Phys. Mech. Astron. 54, 942 (2011)

    Article  ADS  Google Scholar 

  19. 19.

    Gu, B., et al.: A two-step quantum secure direct communication protocol with hyperentanglement. Chin. Phys. B 20, 100309 (2011)

    Article  ADS  Google Scholar 

  20. 20.

    Wu, F.Z., Yang, G.J., Wang, H.B., Xiong, J., Alzahrani, F., Hobiny, A., Deng, F.G.: High-capacity quantum secure direct communication with two-photon six-qubit hyperentangled states. Sci. China Phys. Mech. Astron. 60, 120313 (2017)

    Article  ADS  Google Scholar 

  21. 21.

    Hu, J.Y., Yu, B., Jing, M.Y., Xiao, L.T., Jia, S.T., Qin, G.Q., Long, G.L.: Experimental quantum secure directcommunication with single photons. Light Sci. Appl. 5, e16144 (2016)

    Article  Google Scholar 

  22. 22.

    Zhang, W., Ding, D.S., Sheng, Y.B., Zhou, L., Shi, B.S., Guo, G.C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501 (2017)

    Article  ADS  Google Scholar 

  23. 23.

    Zhu, F., Zhang, W., Sheng, Y.B., Huang, Y.D.: Experimental long-distance quantum secure direct communication. Sci. Bull. 62, 1519 (2017)

    Article  Google Scholar 

  24. 24.

    Yuan, H., Zhou, J., Zhang, G., Wei, X.F.: Two-step efficient deterministic secure quantum communication using three-qubit W state. Commun. Theor. Phys. 55, 984 (2011)

    Article  ADS  MATH  Google Scholar 

  25. 25.

    Yuan, H., Song, J., Zhou, J., Zhang, G., Wei, X.F.: High-capacity deterministic secure four-qubit W state protocol for quantum communication based on order rearrangement of particle pairs. Int. J. Theor. Phys. 50, 2403 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. 26.

    Situ, H.Z., Qiu, D.W.: Simultaneous dense coding. J. Phys. A Math. Theor. 43, 055301 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. 27.

    Huang, Z.M., Zhang, C., Situ, H.Z.: Performance analysis of simultaneous dense coding protocol under decoherence. Quant. Inf. Process. 16, 227 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. 28.

    Huang, Z.M., Ye, Y.Y., Luo, D.R.: Simultaneous dense coding affected by fluctuating massless scalar field. Quantum Inf. Process. 17, 101 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. 29.

    Hillery, M., Buzek, V., Berthiaunie, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. 30.

    Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004)

    Article  ADS  Google Scholar 

  31. 31.

    Deng, F.G., Zhou, H.Y., Long, G.L.: Circular quantum secret sharing. J. Phys. A Math. Gen. 39, 14089 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. 32.

    Qin, H.W., Zhu, X.H., Dai, Y.W.: \((t, n)\) threshold quantum secret sharing using the phase shift operation. Quantum Inf. Proc. 15, 2997 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. 33.

    Qin, H.W., Dai, Y.W.: Proactive quantum secret sharing. Quantum Inf. Proc. 14, 4237 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. 34.

    Lu, H., et al.: Secret sharing of a quantum state. Phys. Rev. Lett. 117, 030501 (2016)

    Article  ADS  Google Scholar 

  35. 35.

    Bai, C.M., et al.: Quantum secret sharing using the d-dimensional GHZ state. Quantum Inf. Process. 16, 59 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. 36.

    Wang, J., et al.: Quantum-secret-sharing scheme based on local distinguishability of orthogonal multiqudit entangled states. Phys. Rev. A 95, 022320 (2017)

    Article  ADS  Google Scholar 

  37. 37.

    Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648 (1999)

    Article  ADS  Google Scholar 

  38. 38.

    Lance, A.M., Symul, T., Bowen, W.P., Sanders, B.C., Lam, P.K.: Tripartite quantum state sharing. Phys. Rev. Lett. 92, 177903 (2004)

    Article  ADS  Google Scholar 

  39. 39.

    Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y.: Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein–Podolsky–Rosen pairs. Phys. Rev. A 72, 044301 (2005)

    Article  ADS  Google Scholar 

  40. 40.

    Gordon, G., Rigolin, G.: Generalized quantum-state sharing. Phys. Rev. A 73, 062316 (2006)

    Article  ADS  Google Scholar 

  41. 41.

    Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y.: Quantum state sharing of an arbitrary two-qubit state with two-photon entanglements and Bell-state measurements. Euro. Phys. J. D 39, 459 (2006)

    Article  ADS  Google Scholar 

  42. 42.

    Li, X.H., Zhou, P., Li, C.Y., Zhou, H.Y., Deng, F.G.: Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state. J. Phys. B At. Mol. Opt. Phys. 39, 1975 (2006)

    Article  ADS  Google Scholar 

  43. 43.

    Wang, Z.Y., Liu, Y.M., Wang, D., Zhang, Z.J.: Generalized quantum state sharing of arbitrary unknown two-qubit state. Opt. Commun. 276, 322 (2007)

    Article  ADS  Google Scholar 

  44. 44.

    Dong, L., Xiu, X.M., Gao, Y.J.: Multiparty quantum state sharing of M-qubit state. Int. J. Mod. Phys. C 18, 1699 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. 45.

    Man, Z.X., Xia, Y.J., An, N.B.: Quantum state sharing of an arbitrary multiqubit state using nonmaximally entangled GHZ states. Euro. Phys. J. D 42, 333 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  46. 46.

    Hou, K., Li, Y.B., Shi, S.H.: Quantum state sharing with a genuinely entangled five-qubit state and Bell-state measurements. Opt. Commun. 283, 1961 (2010)

    Article  ADS  Google Scholar 

  47. 47.

    Shi, R., Huang, L., Yang, W., Zhong, H.: Multi-party quantum state sharing of an arbitrary two-qubit state with Bell states. Quantum Inf. Proc. 10, 231 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  48. 48.

    Nguyen, B.A.: Quantum dialogue. Phys. Lett. A 328, 6 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. 49.

    Shi, G.F., Xi, X.Q., Hu, M.L., Yue, R.H.: Quantum secure dialogue by using single photons. Opt. Commun. 283, 1984 (2010)

    Article  ADS  Google Scholar 

  50. 50.

    Gao, G.: Two quantum dialogue protocols without information leakage. Opt. Commun. 283, 2288 (2010)

    Article  ADS  Google Scholar 

  51. 51.

    Zhou, N.R., Wu, G.T., Gong, L.H., Liu, S.Q.: Secure quantum dialogue protocol based on W states without information leakage. Int. J. Theor. Phys. 52, 3204 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  52. 52.

    Yin, A.H., Tang, Z.H.: Two-step efficient quantum dialogue with three-particle entangled W state. Int. J. Theor. Phys. 53, 2760 (2014)

    Article  MATH  Google Scholar 

  53. 53.

    Zheng, C., Long, G.F.: Quantum secure direct dialogue using Einstein–Podolsky–Rosen pairs. Sci. China Phys. Mech. Astron. 57, 1238 (2014)

    Article  ADS  Google Scholar 

  54. 54.

    Gao, G.F., et al.: Preparation of Greenberger–Horne–Zeilinger and W states on a one-dimensional Ising chain by global control. Phys. Rev. A 87, 032335 (2013)

    Article  ADS  Google Scholar 

  55. 55.

    Riebe, M., et al.: Deterministic quantum teleportation with atoms. Nature 429, 734 (2004)

    Article  ADS  Google Scholar 

  56. 56.

    Ikram, M., Zhu, S.Y., Zubairy, M.S.: Quantum teleportation of an entangled state. Phys. Rev. A 62, 022307 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  57. 57.

    Boschi, D., et al.: Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 80, 1121 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. 58.

    Brunel, C., Lounis, B., Tamarat, P., et al.: Triggered source of single photons based on controlled single molecule fluorescence. Phys. Rev. Lett. 83, 2722 (1999)

    Article  ADS  Google Scholar 

  59. 59.

    Kraus, K., Böhm, A., Dollard, J.D. et al.: States, Effects, and Operations Fundamental Notions of Quantum Theory. Lecture Notes in Physics, vol. 190 (1983)

  60. 60.

    Gorini, V., Kossakowski, A., Surdarshan, E.C.G.: Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17, 821 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  61. 61.

    Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976)

    ADS  MathSciNet  MATH  Google Scholar 

  62. 62.

    Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    Google Scholar 

  63. 63.

    Li, X.H., et al.: Faithful qubit transmission against collective noise without ancillary qubits. Appl. Phys. Lett. 91, 144101 (2007)

    Article  ADS  Google Scholar 

  64. 64.

    Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996)

    Article  ADS  Google Scholar 

  65. 65.

    Pan, J.W., Simon, C., Zellinger, A.: Entanglement purification for quantum communication. Nature 410, 1067 (2001)

    Article  ADS  Google Scholar 

  66. 66.

    Sheng, Y.B., et al.: Efficient polarization entanglement purification based on parametric down conversion sources with cross-Kerr nonlinearity. Phys. Rev. A 77, 042308 (2008)

    Article  ADS  Google Scholar 

  67. 67.

    Sheng, Y.B., et al.: Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement. Phys. Rev. A 81, 032307 (2010)

    Article  ADS  Google Scholar 

  68. 68.

    Li, X.H.: Deterministic polarization-entanglement purification using spatial entanglement. Phys. Rev. A 82, 044304 (2010)

    Article  ADS  Google Scholar 

  69. 69.

    Sheng, Y.B., et al.: One-step deterministic polarization entanglement purification using spatial entanglement. Phys. Rev. A 82, 044305 (2010)

    Article  ADS  Google Scholar 

  70. 70.

    Deng, F.G.: Efficient multipartite entanglement purification with the entanglement link from a subspace. Phys. Rev. A 84, 052312 (2011)

    Article  ADS  Google Scholar 

  71. 71.

    Sheng, Y.B., Zhou, L.: Deterministic polarization entanglement purification using time-bin entanglement. Laser Phys. Lett. 11, 085203 (2014)

    Article  ADS  Google Scholar 

  72. 72.

    Ren, B.C., et al.: Hyper entanglement purification and concentration assisted by diamond NV centers inside photonic crystal cavities. Laser Phys. Lett. 10, 115201 (2013)

    Article  ADS  Google Scholar 

  73. 73.

    Ren, B.C., et al.: Two-step hyperentanglement purification with the quantum-state-joining method. Phys. Rev. A 90, 052309 (2014)

    Article  ADS  Google Scholar 

  74. 74.

    Wang, G.Y., et al.: Hyperentanglement purification for two-photon six-qubit quantum systems. Phys. Rev. A 94, 032319 (2016)

    Article  ADS  Google Scholar 

  75. 75.

    Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046–2052 (1996)

    Article  ADS  Google Scholar 

  76. 76.

    Zhao, Z., Pan, J.W., Zhan, M.S.: Practical scheme for entanglement concentration. Phys. Rev. A 64, 014301 (2001)

    Article  ADS  Google Scholar 

  77. 77.

    Sheng, Y.B., et al.: Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics. Phys. Rev. A 77, 062325 (2008)

    Article  ADS  Google Scholar 

  78. 78.

    Sheng, Y.B., Zhou, L., Zhao, S.M., Zheng, B.Y.: Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs. Phys. Rev. A 85, 012307 (2012)

    Article  ADS  Google Scholar 

  79. 79.

    Deng, F.G.: Optimal nonlocal multipartite entanglement concentration based on projection measurements. Phys. Rev. A 85, 022311 (2012)

    Article  ADS  Google Scholar 

  80. 80.

    Ren, B.C., et al.: Hyperentanglement concentration for two-photon four-qubit systems with linear optics. Phys. Rev. A 88, 012302 (2013)

    Article  ADS  Google Scholar 

  81. 81.

    Ren, B.C., Long, G.L.: General hyperentanglement concentration for photon systems assisted by quantum dot spins inside optical microcavities. Opt. Express 22, 6547 (2014)

    Article  ADS  Google Scholar 

  82. 82.

    Ren, B.C., Long, G.L.: Highly efficient hyperentanglement concentration with two steps assisted by quantum swap gates. Sci. Rep. 5, 16444 (2015)

    Article  ADS  Google Scholar 

  83. 83.

    Ren, B.C., et al.: Hyperentanglement concentration of nonlocal two-photon six-qubit systems with linear optics. Ann. Phys. 385, 86–94 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (61871205), the Innovation Project of Department of Education of Guangdong Province (2017KTSCX180), and the Jiangmen Science and Technology Plan Project for Basic and Theoretical Research (2018JC01010).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zhiming Huang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, Z., Situ, H. Protection of quantum dialogue affected by quantum field. Quantum Inf Process 18, 37 (2019). https://doi.org/10.1007/s11128-018-2152-y

Download citation

Keywords

  • Quantum dialogue
  • GHZ state
  • Massless scalar field
  • Reflecting boundary