Coherence and entanglement under three-qubit cloning operations

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Coherence and entanglement are the two most crucial resources for various quantum information processing tasks. Here, we study the interplay of coherence and entanglement under the action of different three-qubit quantum cloning operations. Considering certain well-known quantum cloning machines (input state independent and dependent), we provide examples of coherent and incoherent operations performed by them. We show that both the output entanglement and coherence could vanish under incoherent cloning operations. Coherent cloning operations, on the other hand, could be used to construct a universal and optimal coherence machine. It is also shown that under coherent cloning operations, the output two-qubit entanglement could be maximal even if the input coherence is negligible. Also it is possible to generate a fixed amount of entanglement independent of the nature of the input state.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. 1.

    Einstein, A., Podolsky, D., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    ADS  Article  Google Scholar 

  2. 2.

    Schrödinger, E.: Discussion of probability relations between separated systems. Proc. Camb. Philos. Soc. 31, 555 (1935)

    ADS  Article  Google Scholar 

  3. 3.

    Schrödinger, E.: Discussion of probability relations between separated systems. Proc. Camb. Philos. Soc. 32, 446 (1936)

    ADS  Article  Google Scholar 

  4. 4.

    Wiseman, H.M., Jones, S.J., Doherty, A.C.: Steering, entanglement, nonlocality, and the Einstein–Podolsky–Rosen paradox. Phys. Rev. Lett. 98, 140402 (2007)

    ADS  MathSciNet  Article  Google Scholar 

  5. 5.

    Jones, S.J., Wiseman, H.M., Doherty, A.C.: Entanglement, Einstein–Podolsky–Rosen correlations, bell nonlocality, and steering. Phys. Rev. A 76, 052116 (2007)

    ADS  MathSciNet  Article  Google Scholar 

  6. 6.

    Bell, J.S.: On the Einstein Podolsky Rosen paradox. Physics 1, 195 (1964)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  8. 8.

    Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    ADS  MathSciNet  Article  Google Scholar 

  9. 9.

    Bennett, C.H., Brassard, G., Crpeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    ADS  MathSciNet  Article  Google Scholar 

  10. 10.

    Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661 (1991)

    ADS  MathSciNet  Article  Google Scholar 

  11. 11.

    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    ADS  MathSciNet  Article  Google Scholar 

  12. 12.

    Boschi, D., Branca, S., De Martini, F., Hardy, L., Popescu, S.: Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 80, 1121 (1998)

    ADS  MathSciNet  Article  Google Scholar 

  13. 13.

    Michler, M., Weinfurter, H., Zukowski, M.: Experiments towards Falsification of noncontextual hidden variable theories. Phys. Rev. Lett. 84, 5457 (2000)

    ADS  Article  Google Scholar 

  14. 14.

    Barreiro, J.T., Wei, T.-C., Kwiat, P.G.: Beating the channel capacity limit for linear photonic superdense coding. Nat. Phys. 4, 282 (2008)

    Article  Google Scholar 

  15. 15.

    Berta, M., Christandl, M., Colbeck, R., Renes, J.M., Renner, R.: The uncertainty principle in the presence of quantum memory. Nat. Phys. 6, 659 (2010)

    Article  Google Scholar 

  16. 16.

    Pramanik, T., Chowdhury, P., Majumdar, A.S.: Fine-grained lower limit of entropic uncertainty in the presence of quantum memory. Phys. Rev. Lett. 110, 020402 (2013)

    ADS  Article  Google Scholar 

  17. 17.

    Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    ADS  Article  Google Scholar 

  18. 18.

    Girolami, D.: Observable measure of quantum coherence in finite dimensional systems. Phys. Rev. Lett. 113, 170401 (2014)

    ADS  Article  Google Scholar 

  19. 19.

    Napoli, C., Bromley, T.R., Cianciaruso, M., Piani, M., Johnston, N., Adesso, G.: Robustness of coherence: an operational and observable measure of quantum coherence. Phys. Rev. Lett. 116, 150502 (2016)

    ADS  Article  Google Scholar 

  20. 20.

    Yao, Y., Dong, G.H., Xiao, X., Sun, C.P.: Frobenius-norm-based measures of quantum coherence and asymmetry. Sci. Rep. 6, 32010 (2016)

    ADS  Article  Google Scholar 

  21. 21.

    berg, J.: Catalytic coherence. Phys. Rev. Lett. 113, 150402 (2014)

    Article  Google Scholar 

  22. 22.

    Narasimhachar, V., Gour, G.: Low-temperature thermodynamics with quantum coherence. Nat. Commun. 6, 7689 (2015)

    ADS  Article  Google Scholar 

  23. 23.

    wikliski, P., Studziski, M., Horodecki, M., Oppenheim, J.: Limitations on the evolution of quantum coherences: towards fully quantum second laws of thermodynamics. Phys. Rev. Lett. 115, 210403 (2015)

    Article  Google Scholar 

  24. 24.

    Gour, G., Marvian, I., Spekkens, R.W.: Measuring the quality of a quantum reference frame: the relative entropy of frameness. Phys. Rev. A 80, 012307 (2009)

    ADS  Article  Google Scholar 

  25. 25.

    Marvian, I., Spekkens, R.W.: The theory of manipulations of pure state asymmetry: I. Basic tools, equivalence classes and single copy transformations. New J. Phys. 15, 033001 (2013)

    ADS  Article  Google Scholar 

  26. 26.

    Marvian, I., Spekkens, R.W., Zanardi, P.: Quantum speed limits, coherence, and asymmetry. Phys. Rev. A 93, 052331 (2016)

    ADS  Article  Google Scholar 

  27. 27.

    Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)

    ADS  MathSciNet  Article  Google Scholar 

  28. 28.

    Mondal, D., Pramanik, T., Pati, A.K.: Nonlocal advantage of quantum coherence. Phys. Rev. A 95, 010301 (2017)

    ADS  MathSciNet  Article  Google Scholar 

  29. 29.

    Jung, E., Hwang, M.-R., Ju, Y.H., Kim, M.-S., Yoo, S.-K., Kim, H., Park, D., Son, J.-W., Tamaryan, S., Cha, S.-K.: Greenberger–Horne–Zeilinger versus W states: quantum teleportation through noisy channels. Phys. Rev. A 78, 012312 (2008)

    ADS  Article  Google Scholar 

  30. 30.

    Kang, Y.-H., Chen, Y.-H., Wu, Q.-C., Huang, B.-H., Song, J., Xia, Y.: Fast generation of W states of superconducting qubits with multiple Schrodinger dynamics. Sci. Rep. 6, 36737 (2016)

    ADS  Article  Google Scholar 

  31. 31.

    Luo, Y., Li, Y., Hsieh, M-H: Inequivalent multipartite coherence classes and new coherence monotones. arxiv:1807.06308

  32. 32.

    Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nat. (Lond.) 299, 802 (1982)

    ADS  Article  Google Scholar 

  33. 33.

    Buzek, V., Hillery, M.: Quantum copying: beyond the no-cloning theorem. Phys. Rev. A 54, 1844 (1996)

    ADS  MathSciNet  Article  Google Scholar 

  34. 34.

    Bruss, D., Cinchetti, M., DAriano, G.M., Macchiavello, C.: Phase-covariant quantum cloning. Phys. Rev. A 62, 12302 (2000)

    ADS  Article  Google Scholar 

  35. 35.

    Bruss, D., DiVincenzo, D.P., Ekert, A., Fuchs, C.A., Macchiavello, C., Smolin, J.A.: Optimal universal and state-dependent quantum cloning. Phys. Rev. A 57, 2368 (1998)

    ADS  Article  Google Scholar 

  36. 36.

    Streltsov, A., Adesso, G., Plenio, M.B.: Colloquium: quantum coherence as a resource. Rev. Mod. Phys. 89, 041003 (2017)

    ADS  MathSciNet  Article  Google Scholar 

  37. 37.

    Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)

    ADS  Article  Google Scholar 

  38. 38.

    Ying, M.: WoottersZurek Quantum-copying machine: the higher-dimensional case. Phys. Lett. A 299, 107 (2002)

    ADS  MathSciNet  Article  Google Scholar 

  39. 39.

    Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    ADS  Article  Google Scholar 

  40. 40.

    O’Connor, K.M., Wootters, W.K.: Entangled rings. Phys. Rev. A 63, 052302 (2000)

    ADS  Article  Google Scholar 

  41. 41.

    Bruss, D., Macchiavello, C.: On the entanglement structure in quantum cloning. Found. Phys. 33, 1617 (2003)

    MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Suchetana Goswami.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Goswami, S., Adhikari, S. & Majumdar, A.S. Coherence and entanglement under three-qubit cloning operations. Quantum Inf Process 18, 36 (2019). https://doi.org/10.1007/s11128-018-2150-0

Download citation

Keywords

  • Quantum correlations
  • Coherence
  • Entanglement
  • Cloning operations