Cryptanalysis and improvement of the novel quantum scheme for secure two-party distance computation

  • Bingren Chen
  • Wei YangEmail author
  • Liusheng Huang


Secure multiparty computational geometry is a vital field of secure multiparty computation, which computes a computation geometric problem without revealing any private information of each party. A recent paper proposed a scheme about a novel quantum scheme for secure two-party distance computation. We cryptanalyze the scheme in the following three aspects: (1) There exists an entangle-and-measure attack method for Bob to detect Alice’s location with a probability of 50% and the attack cannot be detected whether this attack is successful or not. (2) There is a loophole for Alice to get more information if she submits a different point in the second chance. The amount of information exposed by Bob is unacceptable. (3) In the definition of S2PDC, only Alice can get the distance between both positions while Bob gets nothing. However, under some circumstances, as a participant in the scheme, Bob has right to get the distance. Above all, we have improved the agreement from different items: (1) Security: the improved scheme can defend our new type attack based on the original security. (2) Fairness: The amount of information leaked by Bob is minimum in the new scheme. (3) Symmetric: Our scheme allows that both parties can get the distance from the scheme directly. (4) Efficiency: The information complexity of the new scheme is no more than the former one.


Cryptanalysis Secure multiparty computation Computational geometry 



This work was supported by the National Natural Science Foundation of China (No. 61572456) and the Anhui Initiative in Quantum Information Technologies (No. AHY150300).


  1. 1.
    Yao, A.C.: Protocols for secure computations. In: 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982), pp. 160–164 (1982)Google Scholar
  2. 2.
    Atallah, M.J., Du, W.: Secure multi-party computational geometry. In: Dehne, F., Sack, J.R., Tamassia, R. (eds.) Algorithms and Data Structures, Ser. Lecture Notes in Computer Science, pp. 165–179. Springer, Berlin (2001)Google Scholar
  3. 3.
    Li, S.D., Dai, Y.Q.: Secure two-party computational geometry. J. Comput. Sci. Technol. 20(2), 258–263 (2005). MathSciNetCrossRefGoogle Scholar
  4. 4.
    Frikken, K.B., Atallah, M.J.: Privacy preserving route planning. In: Proceedings of the 2004 ACM Workshop on Privacy in the Electronic Society—WPES ’04. Washington DC, USA: ACM Press, p. 8. (2004).
  5. 5.
    Yang, B., Sun, A., Zhang, W.: Secure two-party protocols on planar circles. J. Inf. 8, 12 (2011)Google Scholar
  6. 6.
    Wen, L., Luo, S.S., Yang, Y.X., Yang, X., Qian, X.: A study of secure two-party circle computation problem. J. Beijing Univ. Posts Telecommun. 32(3), 32–35 (2009)Google Scholar
  7. 7.
    Peng, Z., Shi, R., Zhong, H., Cui, J., Zhang, S.: A novel quantum scheme for secure two-party distance computation. Quantum Inf. Process. 16(12), 316 (2017). ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Gao, F., Guo, F.-Z., Wen, Q.-Y., Zhu, F.-C.: Comment on experimental demonstration of a quantum protocol for byzantine agreement and liar detection. Phys. Rev. Lett. 101(20), 208901 (2008). ADSCrossRefGoogle Scholar
  9. 9.
    Zhang, Y.S., Li, C.F., Guo, G.C.: Comment on quantum key distribution without alternative measurements [Phys. Rev. A, 052312 (2000)]. Physics 63(3), 052312 (2012)Google Scholar
  10. 10.
    Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: A simple participant attack on the Brádler-dušek protocol. Quantum Inf. Comput. 7(4), 329–334 (2007)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Fei, G., Qiao Yan, W., Fu Chen, Z.: Teleportation attack on the QSDC protocol with a random basis and order. Chin. Phys. B 17(9), 3189–3193 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    Gao, F., Qin, S., Guo, F., Wen, Q.: Dense-Coding attack on three-party quantum key distribution protocols. IEEE J. Quantum Electron. 47(5), 630–635 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    Hao, L., Li, J., Long, G.: Eavesdropping in a quantum secret sharing protocol based on Grover algorithm and its solution. Sci. China Phys. Mech. Astron. 53(3), 491–495 (2010). ADSCrossRefGoogle Scholar
  14. 14.
    Qin, S.J., Gao, F., Wen, Q.Y., Zhu, F.C.: Improving the security of multiparty quantum secret sharing against an attack with a fake signal. Phys. Lett. A 357(2), 101–103 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    Wojcik, A.: Eavesdropping on the “Ping-Pong” Quantum Communication Protocol. Physical Review Letters 90(15), 157901 (2003). ADSCrossRefGoogle Scholar
  16. 16.
    Wójcik, A.: Comment on quantum dense key distribution. Phys. Rev. A 71, 016301 (2005). ADSCrossRefGoogle Scholar
  17. 17.
    Cai, Q.: The ping-pong protocol can be attacked without eavesdropping. Phys. Rev. Lett. 91(10), (2003). arXiv:quant-ph/0402052
  18. 18.
    Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Consistency of shared reference frames should be reexamined. Phys. Rev. A 77(1), 014302 (2008). ADSCrossRefGoogle Scholar
  19. 19.
    Gao, F., Yan, W., Qiao, Z., Fu, C.: Comment on: quantum exam [Phys. Lett. A 350 (2006) 174]. Phys. Lett. A 360(6), 746–747 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    Fei, G., Song, L., Qiao Yan, W., Fu Chen, Z.: A special eavesdropping on one-sender versus n -receiver QSDC protocol. Chin. Phys. Lett. 25(5), 1561 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger Horne Zeilinger state. Opt. Commun. 283(1), 192–195 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    Gisin, N., Fasel, S., Kraus, B., Zbinden, H., Ribordy, G.: Trojan-horse attacks on quantum-key-distribution systems. Phys. Rev. A 73(2), 022320 (2006). ADSCrossRefGoogle Scholar
  23. 23.
    Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Erratum: improving the security of multiparty quantum secret sharing against Trojan horse attack [Phys. Rev. A 72, 044302 (2005)]. Phys. Rev. A 72(4), 440–450 (2005)Google Scholar
  24. 24.
    Lamaslinares, A., Kurtsiefer, C.: Breaking a quantum key distribution system through a timing side channel. Opt. Exp. 15(15), 9388 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    He, J., Li, Q., Wu, C., Chan, W.H., Zhang, S.: Measurement-device-independent semiquantum key distribution. Int. J. Quantum Inf. 16, 1850012 (2018)CrossRefGoogle Scholar
  26. 26.
    Braunstein, S.L., Pirandola, S.: Side-channel-free quantum key distribution. Phys. Rev. Lett. 108(13), 130502 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    Giovannetti, V., Lloyd, S., Maccone, L.: Quantum private queries. Phys. Rev. Lett. 100(23), 230502 (2008). ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Olejnik, L.: Secure quantum private information retrieval using phase-encoded queries. Phys. Rev. A 84(2), 3242–3244 (2011)CrossRefGoogle Scholar
  29. 29.
    Dai, H., Chen, P., Liang, L., Li, C.: Classical communication cost and remote preparation of the four-particle GHZ class state. Phys. Lett. A 355(4–5), 285–288 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    Dai, H., Zhang, M., Zhang, Z., Xi, Z.: Probabilistic remote preparation of a four-particle entangled w state for the general case and for all kinds of the special cases. Commun. Theor. Phys. 60(3), 313–322 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    Hongyi, D., Pingxing, C., Ming, Z., Chengzu, L.: Remote preparation of an entangled two-qubit state with three parties. Chin. Phys. B 17(1), 27–33 (2008)CrossRefGoogle Scholar
  32. 32.
    Wei, J., Dai, H., Zhang, M.: Two efficient schemes for probabilistic remote state preparation and the combination of both schemes. Quantum Inf. Process. 13(9), 2115–2125 (2014). ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Fitzi, M., Garay, J.A., Maurer, U., Ostrovsky, R.: Minimal complete primitives for secure multi-party computation. J. Cryptol. 18, 37–61 (2005)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Yang, Y.-G., Wen, Q.-Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A: Math. Theor. 42(5), 055305 (2009)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Computer Science and TechnologyUniversity of Science and Technology in ChinaHefeiChina

Personalised recommendations