Skip to main content
Log in

Real-time selection for free-space measurement device independent quantum key distribution

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In consideration of the time-dependent transmittance caused by atmospheric turbulence, we combine real-time selection (RTS) method with measurement device independent quantum key distribution (MDI-QKD). The modified scheme filters out the intervals with high channel transmittance and thus in turn increases the secure key rate. The optimal threshold of post-selection is determined by an iterative algorithm in advance, which balances the decrease in the total number of signals and the increase in average transmittance. Simulation results show that our modified scheme has apparent advances in both maximum tolerant loss and secure key rate compared to the original MDI-QKD protocol. The MDI-QKD with RTS even performs better when the level of turbulence becomes larger. Furthermore, the modified scheme is more stable against the statistical fluctuation as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lütkenhaus, N., Shields, A.: Focus on quantum cryptography: theory and practice. New J. Phys. 11(4), 300–310 (2009)

    Article  Google Scholar 

  2. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441–444 (2000)

    ADS  Google Scholar 

  3. Mayers, D.: Unconditional security in quantum cryptography. ACM 48, 351–406 (2001)

    MathSciNet  MATH  Google Scholar 

  4. Gottesman, D., Lo. H.K., Lütkenhaus, N., et al.: Security of quantum key distribution with imperfect devices. Information Theory, 2004. In: Proceedings. International Symposium on ISIT 2004. IEEE, p. 136 (2005)

  5. Gottesman, D., Lo, H.K., Lutkenhaus, N., et al.: Security of quantum key distribution with imperfect devices. Quantum Inf. Comput. 4(5), 325–360 (2004)

    MathSciNet  MATH  Google Scholar 

  6. Takesue, H., Nam, S.W., Zhang, Q., et al.: Quantum key distribution over a 40 dB channel loss using superconducting single-photon detectors. Nat. Photonics 1(17), 5078–5081 (2007)

    Google Scholar 

  7. Braunstein, S.L., Pirandola, S.: Measurement device independent quantum key distribution. Phys. Rev. Lett. 108(13), 4089–4091 (2012)

    Article  Google Scholar 

  8. Brassard, G., Lutkenhaus, N., Mor, T., et al.: Limitations on practical quantum cryptography. Phys. Rev. Lett. 85(6), 1330 (2000)

    Article  ADS  Google Scholar 

  9. Yuan, Z.L.: Avoiding the blinding attack in QKD. Nat. Photonics 4(4), 800–801 (2010)

    Article  ADS  Google Scholar 

  10. Zhao, Y., Fung, C.H.F., Qi, B., et al.: Quantum hacking: experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Phys. Rev. A 78(4), 042333 (2008)

    Article  ADS  Google Scholar 

  11. Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108(13), 130503 (2012)

    Article  ADS  Google Scholar 

  12. Ma, X.F., Fung, C.H.F., Razavi, M.: Statistical fluctuation analysis for measurement-device-independent quantum key distribution. Phys. Rev. A 86(5), 052305 (2012)

    Article  ADS  Google Scholar 

  13. Sun, S.H., Gao, M., Li, C.Y., et al.: Practical decoy-state measurement-device-independent quantum key distribution. Phys. Rev. A 87(5), 052329 (2013)

    Article  ADS  Google Scholar 

  14. Zhang, Y.C., Li, Z.Y., Yu, S., et al.: Continuous-variable measurement-device-independent quantum key distribution using squeezed states. Phys. Rev. A 90(5), 052325 (2014)

    Article  ADS  Google Scholar 

  15. Tang, Y.L., Yin, H.L., Chen, S.J., et al.: Measurement-device-independent quantum key distribution over 200 km. Phys. Rev. Lett. 113(19), 190501 (2014)

    Article  ADS  Google Scholar 

  16. Yin, H.L., Chen, T.Y., Yu, Z.W., et al.: Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett. 117(19), 190501 (2016)

    Article  ADS  Google Scholar 

  17. Schmitt-Manderbach, T., Weier, H., Fürst, M., et al.: Experimental demonstration of free-space decoy-state quantum key distribution over 144 km. Phys. Rev. Lett. 98(1), 010504 (2007)

    Article  ADS  Google Scholar 

  18. Yin, J., Ren, J.G., Lu, H., et al.: Quantum teleportation and entanglement distribution over 100 km free-space channels. Nature 488(7410), 185 (2012)

    Article  ADS  Google Scholar 

  19. Liao, S.K., Cai, W.Q., Liu, W.Y., et al.: Satellite-to-ground quantum key distribution. Nature 549, 7670 (2017)

    Article  Google Scholar 

  20. Wang, L., Zhao, S.M., Gong, L.Y., et al.: Free-space measurement-device-independent quantum-key-distribution protocol using decoy states with orbital angular momentum. Chin. Phys. B 24(12), 238–245 (2015)

    Google Scholar 

  21. Goyal, S., Ibrahim, A.H., Roux, F.S., et al. Experimental orbital angular momentum based quantum key distribution through turbulence. arXiv ID: 1412.0788

  22. Capraro, I., Tomaello, A., Dall’Arche, A., et al.: Impact of turbulence in long range quantum and classical communications. Phys. Rev. Lett. 109(20), 200502 (2012)

    Article  ADS  Google Scholar 

  23. Vallone, G., Marangon, D.G., Canale, M., et al.: Adaptive real time selection for quantum key distribution in lossy and turbulent free-space channels. Phys. Rev. A 91(4), 042320 (2015)

    Article  ADS  Google Scholar 

  24. Erven, C., Heim, B., Meyerscott, E., et al.: Studying free-space transmission statistics and improving free-space QKD in the turbulent atmosphere. New J. Phys. 14(12), 852–859 (2012)

    Article  Google Scholar 

  25. Wang, W.Y., Xu, F.H., Lo, H.K.: Prefixed-threshold real-time selection method in free-space quantum key distribution. Phys. Rev. A 97(3), 032337 (2018)

    Article  ADS  Google Scholar 

  26. Bedington, R., Arrazola, J.M., Ling, A.: Progress in satellite quantum key distribution. Nature 3, 30 (2017)

    Google Scholar 

Download references

Acknowledgements

C. Dong is supported by the National Natural Science Foundation of China (Grant No. 11704412). C. Dong is supported by the Foundation of National University of Defense and Technology (Grant No. ZK17-02-09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, ZD., Chen, D., Zhao, SH. et al. Real-time selection for free-space measurement device independent quantum key distribution. Quantum Inf Process 18, 33 (2019). https://doi.org/10.1007/s11128-018-2146-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-2146-9

Keywords

Navigation