Polygamy relation for the Rényi-\(\alpha \) entanglement of assistance in multi-qubit systems


We prove a new polygamy relation of multi-party quantum entanglement in terms of Rényi-\(\alpha \) entanglement of assistance for \(\left( {\sqrt{7} - 1} \right) /2\le \alpha \le \left( {\sqrt{13} - 1} \right) /2\). This class of polygamy inequality reduces to the polygamy inequality based on entanglement of assistance since Rényi-\(\alpha \) entanglement is a generalization of entanglement of formation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  2. 2.

    Pawlowski, M.: Security proof for cryptographic protocols based only on the monogamy of Bells inequality violations. Phys. Rev. A 82(1–4), 032313 (2010)

    ADS  Google Scholar 

  3. 3.

    Bennett, C.H.: The monogamy of entanglement, the ambiguity of the past, and the complexity of the present. In: Proceedings of the FQXi 4th International Conference, Vieques Island, Puerto Rico (2014). http://fqxi.org/conference/talks/2014. Accessed Jan 2018

  4. 4.

    Toner, B.: Monogamy of non-local quantum correlations. Proc. R. Soc. A 465, 59–69 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  5. 5.

    Seevinck, M.P.: Monogamy of correlations versus monogamy of entanglement. Quantum Inf. Process. 9, 273–294 (2010)

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Ma, X.-S., Dakic, B., Naylor, W., Zeilinger, A., Walther, P.: Quantum simulation of the wavefunction to probe frustrated Heisenberg spin systems. Nat. Phys. 7, 399–405 (2011)

    Google Scholar 

  7. 7.

    Garcia-Saez, A., Latorre, J.I.: Renormalization group contraction of tensor networks in three dimensions. Phys. Rev. B 87(1–7), 085130 (2013)

    ADS  Google Scholar 

  8. 8.

    Susskind, L.: Black hole complementarity and the Harlow–Hayden conjecture. arXiv:1301.4505

  9. 9.

    Lloyd, S., Preskill, J.: Unitarity of black hole evaporation in final-state projection models. J. High Energy Phys. 08(1–29), 126 (2014)

    ADS  Google Scholar 

  10. 10.

    Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61(1–5), 052306 (2000)

    ADS  Google Scholar 

  11. 11.

    Osborne, T.J., Verstraete, F.: General monogamy inequality for bipartite qubit entanglement. Phys. Rev. Lett. 96(1–4), 220503 (2006)

    ADS  Google Scholar 

  12. 12.

    Ou, Y.-C., Fan, H., Fei, S.-M.: Proper monogamy inequality for arbitrary pure quantum states. Phys. Rev. A 78(1–4), 012311 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  13. 13.

    Eltschka, C., Osterloh, A., Siewert, J.: Possibility of generalized monogamy relations for multipartite entanglement beyond three qubits. Phys. Rev. A 80((1–7)), 032313 (2009)

    ADS  MathSciNet  Google Scholar 

  14. 14.

    Ren, X.-J., Jiang, W.: Entanglement monogamy inequality in a \(2\bigotimes 2\bigotimes 4\) system. Phys. Rev. A 81(1–4), 024305 (2010)

    ADS  Google Scholar 

  15. 15.

    Cornelio, M.F.: Multipartite monogamy of the concurrence. Phys. Rev. A 87(1–4), 032330 (2013)

    ADS  Google Scholar 

  16. 16.

    Regula, B., DiMartino, S., Lee, S., Adesso, G.: Strong monogamy conjecture for multiqubit entanglement: the four-qubit case. Phys. Rev. Lett. 113(1–4), 110501 (2014)

    ADS  Google Scholar 

  17. 17.

    Bai, Y.-K., Ye, M.-Y., Wang, Z.D.: Entanglement monogamy and entanglement evolution in multipartite systems. Phys. Rev. A 80(1–4), 044301 (2009)

    ADS  Google Scholar 

  18. 18.

    Chi, D.P., Choi, J.W., Jeong, K., Kim, J.S., Kim, T., Lee, S.: Monogamy equality in \(2\bigotimes 2\bigotimes d\) quantum systems. J. Math. Phys. (N. Y.) 49(1–6), 112102 (2008)

    ADS  MATH  Google Scholar 

  19. 19.

    Yu, C.-S., Song, H.-S.: Entanglement monogamy of tripartite quantum states. Phys. Rev. A 77(1–4), 032329 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  20. 20.

    Osterloh, A., Schutzhold, R.: Monogamy of entanglement and improved mean-field ansatz for spin lattices. Phys. Rev. B 91(1–5), 125114 (2015)

    ADS  Google Scholar 

  21. 21.

    Eltschka, C., Siewert, J.: Monogamy equalities for qubit entanglement from Lorentz invariance. Phys. Rev. Lett. 114(1–5), 140402 (2015)

    ADS  Google Scholar 

  22. 22.

    Adesso, G., Illuminati, F.: Continuous variable tangle, monogamy inequality, and entanglement sharing in Gaussian states of continuous variable systems. New J. Phys. 8(1–14), 15 (2006)

    ADS  Google Scholar 

  23. 23.

    Hiroshima, T., Adesso, G., Illuminati, F.: Monogamy inequality for distributed Gaussian entanglement. Phys. Rev. Lett. 98(1–4), 050503 (2007)

    ADS  Google Scholar 

  24. 24.

    Adesso, G., Illuminati, F.: Strong monogamy of bipartite and genuine multipartite entanglement: the Gaussian case. Phys. Rev. Lett. 99(1–4), 150501 (2007)

    ADS  MATH  Google Scholar 

  25. 25.

    Koashi, M., Winter, A.: Monogamy of quantum entanglement and other correlations. Phys. Rev. A 69(1–6), 022309 (2004)

    ADS  MathSciNet  Google Scholar 

  26. 26.

    Ou, Y.-C., Fan, H.: Monogamy inequality in terms of negativity for three-qubit states. Phys. Rev. A 75(1–5), 062308 (2007)

    ADS  MathSciNet  Google Scholar 

  27. 27.

    Kim, J.S., Das, A., Sanders, B.C.: Entanglement monogamy of multipartite higher-dimensional quantum systems using convex-roof extended negativity. Phys. Rev. A 79(1–7), 012329 (2009)

    ADS  Google Scholar 

  28. 28.

    He, H., Vidal, G.: Disentangling theorem and monogamy for entanglement negativity. Phys. Rev. A 91(1–6), 012339 (2015)

    ADS  MathSciNet  Google Scholar 

  29. 29.

    Choi, J.H., Kim, J.S.: Negativity and strong monogamy of multiparty quantum entanglement beyond qubits. Phys. Rev. A 92(1–8), 042307 (2015)

    ADS  Google Scholar 

  30. 30.

    Luo, Y., Li, Y.: Monogamy of \(\alpha \)th power entanglement measurement in qubit systems. Ann. Phys. 362, 511–520 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  31. 31.

    Kim, J.S., Sanders, B.C.: Monogamy of multi-qubit entanglement using Renyi entropy. J. Phys. A Math. Theor. 43(1–13), 445305 (2010)

    MATH  Google Scholar 

  32. 32.

    Cornelio, M.F., de Oliveira, M.C.: Strong superadditivity and monogamy of the Renyi measure of entanglement. Phys. Rev. A 81(1–4), 032332 (2010)

    ADS  Google Scholar 

  33. 33.

    Lohmayer, R., Osterloh, A., Siewert, J., Uhlmann, A.: Entangled three-qubit states without concurrence and three-tangle. Phys. Rev. Lett. 97(1–4), 260502 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  34. 34.

    de Oliveira, T.R., Cornelio, M.F., Fanchini, F.F.: Monogamy of entanglement of formation. Phys. Rev. A 89(1–4), 034303 (2014)

    ADS  Google Scholar 

  35. 35.

    Bai, Y.-K., Xu, Y.-F., Wang, Z.D.: General monogamy relation for the entanglement of formation in multiqubit systems. Phys. Rev. Lett. 113(1–5), 100503 (2014)

    ADS  Google Scholar 

  36. 36.

    Zhu, X.-N., Fei, S.-M.: Entanglement monogamy relations of qubit systems. Phys. Rev. A 90(1–5), 024304 (2014)

    ADS  Google Scholar 

  37. 37.

    Bai, Y.-K., Xu, Y.-F., Wang, Z.D.: Hierarchical monogamy relations for the squared entanglement of formation in multipartite systems. Phys. Rev. A 90(1–12), 062343 (2014)

    ADS  Google Scholar 

  38. 38.

    Liu, F., Gao, F., Wen, Q.-Y.: Linear monogamy of entanglement in three-qubit systems. Sci. Rep. 5(1–9), 16745 (2015)

    ADS  Google Scholar 

  39. 39.

    Song, W., Bai, Y.K., Yang, M., Yang, M., Cao, Z.L.: General monogamy relation of multiqubit systems in terms of squared Renyi-\(\alpha \) entanglement. Phys. Rev. A 93(1–7), 022306 (2016)

    ADS  MathSciNet  Google Scholar 

  40. 40.

    Yuan, G.-M., Song, W., Yang, M., Li, D.-C., Zhao, J.-L., Cao, Z.-L.: Monogamy relation of multi-qubit systems for squared Tsallis-\(q\) entanglement. Sci. Rep. 6(1–8), 28719 (2016)

    ADS  Google Scholar 

  41. 41.

    Luo, Y., Tian, T., Shao, L.-H., Li, Y.: General monogamy of Tsallis \(q\)-entropy entanglement in multiqubit systems. Phys. Rev. A 93(1–9), 062340 (2016)

    ADS  Google Scholar 

  42. 42.

    Tian, T., Luo, Y., Li, Y.: Generalised monogamy relation of convex-roof extended negativity in multi-level systems. Sci. Rep. 6(1–10), 36700 (2016)

    ADS  Google Scholar 

  43. 43.

    Yang, Y., Chen, W., Li, G., Zheng, Z.-J.: Generalized monogamy inequalities and upper bounds of negativity for multiqubit systems. Phys. Rev. A 97(1–6), 012336 (2018)

    ADS  Google Scholar 

  44. 44.

    Gour, G., Meyer, D.A., Sanders, B.C.: Deterministic entanglement of assistance and monogamy constraints. Phys. Rev. A 72(1–4), 042329 (2005)

    ADS  Google Scholar 

  45. 45.

    Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)

    ADS  MATH  Google Scholar 

  46. 46.

    Gour, G., Bandyopadhay, S., Sanders, B.C.: Dual monogamy inequality for entanglement. J. Math. Phys. 48(1–13), 012108 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  47. 47.

    Kim, J.S.: Tsallis entropy and entanglement constraints in multiqubit systems. Phys. Rev. A 81(1–8), 062328 (2010)

    ADS  MathSciNet  Google Scholar 

  48. 48.

    Kim, J.S.: General polygamy inequality of multiparty quantum entanglement. Phys. Rev. A 85(1–4), 062302 (2012)

    ADS  Google Scholar 

  49. 49.

    Buscemi, F., Gour, G., Kim, J.S.: Polygamy of distributed entanglement. Phys. Rev. A 80(1–8), 012324 (2009)

    ADS  Google Scholar 

  50. 50.

    Kim, J.S.: Tsallis entropy and general polygamy of multiparty quantum entanglement in arbitrary dimensions. Phys. Rev. A 94(1–10), 062338 (2016)

    ADS  MathSciNet  Google Scholar 

  51. 51.

    Cui, J., Gu, M., Kwek, L.C., Santos, M.F., Fan, H., Vedral, V.: Quantum phases with differing computational power. Nat. Commun. 3(1–6), 812 (2012)

    ADS  Google Scholar 

  52. 52.

    Franchini, F., Cui, J., Amico, L., Fan, H., Gu, M., Korepin, V., Kwek, L.C., Vedral, V.: Local convertibility and the quantum simulation of edge states in many-body systems. Phys. Rev. X 4(1–8), 041028 (2014)

    Google Scholar 

  53. 53.

    Flammia, S.T., Hamma, A., Hughes, T.L., Wen, X.G.: Topological entanglement Renyi entropy and reduced density matrix structure. Phys. Rev. Lett. 103(1–4), 261601 (2009)

    ADS  Google Scholar 

  54. 54.

    Halasz, G.B., Hamma, A.: Topological Renyi entropy after a quantum quench. Phys. Rev. Lett. 110(1–5), 170605 (2013)

    ADS  Google Scholar 

  55. 55.

    Wang, Y.-X., Mu, L.-Z., Vedral, V., Fan, H.: Entanglement Renyi \(\alpha \) entropy. Phys. Rev. A 93(1–10), 022324 (2016)

    ADS  Google Scholar 

  56. 56.

    Mosonyi, M., Hiai, F.: On the quantum Renyi relative entropies and related capacity formulas. IEEE Trans. Inf. Theory. 57, 2474–2487 (2011)

    MATH  Google Scholar 

  57. 57.

    Debarba, T.: Koashi–Winter relation for \(\alpha \)-Renyi entropies. arXiv:1706.01924

Download references


This work was supported by NSF-China under Grant Nos. 11374085, 11274010, the Anhui Provincial Natural Science Foundation under Grant Nos.1708085MA12, 1708085MA10, the Key Program of the Education Department of Anhui Province under Grant Nos. KJ2017A922, KJ2016A583, the discipline top-notch talents Foundation of Anhui Provincial Universities under Grant Nos. gxbjZD2017024, gxbjZD2016078, the Anhui Provincial Candidates for academic and technical leaders Foundation under Grant No. 2015H052, and the Excellent Young Talents Support Plan of Anhui Provincial Universities.

Author information



Corresponding author

Correspondence to Wei Song.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Song, W., Yang, M., Zhao, J. et al. Polygamy relation for the Rényi-\(\alpha \) entanglement of assistance in multi-qubit systems. Quantum Inf Process 18, 26 (2019). https://doi.org/10.1007/s11128-018-2143-z

Download citation


  • Rényi-\(\alpha \) entanglement of assistance
  • Polygamy relation
  • Multi-qubit systems