Finer distribution of quantum correlations among multiqubit systems


We study the distribution of quantum correlations characterized by monogamy relations in multipartite systems. By using the Hamming weight of the binary vectors associated with the subsystems, we establish a class of monogamy inequalities for multiqubit entanglement based on the \(\alpha \)th (\(\alpha \ge 2\)) power of concurrence, and a class of polygamy inequalities for multiqubit entanglement in terms of the \(\beta \)th (\(0\le \beta \le 2\)) power of concurrence and concurrence of assistance. Moveover, we give the monogamy and polygamy inequalities for general quantum correlations. Application of these results to quantum correlations like squared convex-roof extended negativity, entanglement of formation and Tsallis-q entanglement gives rise to either tighter inequalities than the existing ones for some classes of quantum states or less restrictions on the quantum states. Detailed examples are presented.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  2. 2.

    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    MathSciNet  MATH  ADS  Google Scholar 

  3. 3.

    Mintert, F., Kuś, M., Buchleitner, A.: Concurrence of mixed bipartite quantum states in arbitrary dimensions. Phys. Rev. Lett. 92, 167902 (2004)

    ADS  Google Scholar 

  4. 4.

    Chen, K., Albeverio, S., Fei, S.M.: Concurrence of arbitrary dimensional bipartite quantum states. Phys. Rev. Lett. 95, 040504 (2005)

    MathSciNet  ADS  Google Scholar 

  5. 5.

    Breuer, H.P.: Separability criteria and bounds for entanglement measures. J. Phys. A: Math. Gen. 39, 11847 (2006)

    MathSciNet  MATH  ADS  Google Scholar 

  6. 6.

    Breuer, H.P.: Optimal entanglement criterion for mixed quantum states. Phys. Rev. Lett. 97, 080501 (2006)

    ADS  Google Scholar 

  7. 7.

    de Vicente, J.I.: Lower bounds on concurrence and separability conditions. Phys. Rev. A 75, 052320 (2007)

    MathSciNet  ADS  Google Scholar 

  8. 8.

    Zhang, C.J., Zhang, Y.S., Zhang, S., Guo, G.C.: Optimal entanglement witnesses based on local orthogonal observables. Phys. Rev. A 76, 012334 (2007)

    ADS  Google Scholar 

  9. 9.

    Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    MathSciNet  MATH  ADS  Google Scholar 

  10. 10.

    Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    MathSciNet  MATH  ADS  Google Scholar 

  11. 11.

    Pawlowski, M.: Security proof for cryptographic protocols based only on the monogamy of bells inequality violations. Phys. Rev. A 82, 032313 (2010)

    ADS  Google Scholar 

  12. 12.

    Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63, 014302 (2000)

    ADS  Google Scholar 

  13. 13.

    Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188 (2001)

    ADS  Google Scholar 

  14. 14.

    Koashi, M., Winter, A.: Monogamy of quantum entanglement and other correlations. Phys. Rev. A 69, 022309 (2004)

    MathSciNet  ADS  Google Scholar 

  15. 15.

    Osborne, T.J., Verstraete, F.: General monogamy inequality for bipartite qubit entanglement. Phys. Rev. Lett. 96, 220503 (2006)

    ADS  Google Scholar 

  16. 16.

    Bai, Y.K., Ye, M.Y., Wang, Z.D.: Entanglement monogamy and entanglement evolution in multipartite systems. Phys. Rev. A 80, 044301 (2009)

    ADS  Google Scholar 

  17. 17.

    de Oliveira, T.R., Cornelio, M.F., Fanchini, F.F.: Monogamy of entanglement of formation. Phys. Rev. A 89, 034303 (2014)

    ADS  Google Scholar 

  18. 18.

    Adesso, G., Illuminati, F.: Strong monogamy of bipartite and genuine multipartite entanglement: the Gaussian case. Phys. Rev. Lett. 99, 150501 (2007)

    MATH  ADS  Google Scholar 

  19. 19.

    Hiroshima, T., Adesso, G., Illuminati, F.: Monogamy inequality for distributed gaussian entanglement. Phys. Rev. Lett. 98, 050503 (2007)

    ADS  Google Scholar 

  20. 20.

    Adesso, G., Illuminati, F.: Continuous variable tangle, monogamy inequality, and entanglement sharing in Gaussian states of continuous variable systems. New J. Phys. 8, 15 (2006)

    ADS  Google Scholar 

  21. 21.

    Christandl, M., Winter, A.: Squashed entanglement: an additive entanglement measure. J. Math. Phys. 45, 829 (2004)

    MathSciNet  MATH  ADS  Google Scholar 

  22. 22.

    Yang, D., et al.: Squashed entanglement for multipartite states and entanglement measures based on the mixed convex roof. IEEE Trans. Inf. Theory 55, 3375 (2009)

    MathSciNet  MATH  Google Scholar 

  23. 23.

    Ou, Y.C., Fan, H.: Monogamy inequality in terms of negativity for three-qubit states. Phys. Rev. A 75, 062308 (2007)

    MathSciNet  ADS  Google Scholar 

  24. 24.

    Kim, J.S., Das, A., Sanders, B.C.: Entanglement monogamy of multipartite higher-dimensional quantum systems using convex-roof extend negativity. Phys. Rev. A 79, 012329 (2009)

    ADS  Google Scholar 

  25. 25.

    He, H., Vidal, G.: Disentangling theorem and monogamy for entanglement negativity. Phys. Rev. A 91, 012339 (2015)

    MathSciNet  ADS  Google Scholar 

  26. 26.

    Choi, J.H., Kim, J.S.: Negativity and strong monogamy of multiparty quantum entanglement beyond qubits. Phys. Rev. A 92, 042307 (2015)

    ADS  Google Scholar 

  27. 27.

    Luo, Y., Li, Y.: Monogamy of \(\alpha \)-th power entanglement measurement in qubit system. Ann. Phys. 362, 511 (2015)

    MathSciNet  MATH  ADS  Google Scholar 

  28. 28.

    Kim, J.S.: Tsallis entropy and entanglement constraints in multiqubit systems. Phys. Rev. A 81, 062328 (2010)

    MathSciNet  ADS  Google Scholar 

  29. 29.

    Kim, J.S.: Generalized entanglement constraints in multi-qubit systems in terms of Tsallis entropy. Ann. Phys. 373, 197–206 (2016)

    MathSciNet  MATH  ADS  Google Scholar 

  30. 30.

    Kim, J.S., Sanders, B.C.: Monogamy of multi-qubit entanglement using Rényi entropy. J. Phys. A: Math. Theory 43, 445305 (2010)

    MATH  Google Scholar 

  31. 31.

    Cornelio, M.F., de Oliveira, M.C.: Strong superadditivity and monogamy of the Renyi measure of entanglement. Phys. Rev. A 81, 032332 (2010)

    ADS  Google Scholar 

  32. 32.

    Wang, Y.X., Mu, L.Z., Vedral, V., Fan, H.: Entanglement Rényi-entropy. Phys. Rev. A 93, 022324 (2016)

    ADS  Google Scholar 

  33. 33.

    Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)

    MATH  ADS  Google Scholar 

  34. 34.

    Uhlmann, A.: Fidelity and concurrence of conjugated states. Phys. Rev. A 62, 032307 (2000)

    MathSciNet  ADS  Google Scholar 

  35. 35.

    Rungta, P., Buzek, V., Caves, C.M., Hillery, M., Milburn, G.J.: Universal state inversion and concurrence in arbitrary dimensions. Phys. Rev. A 64, 042315 (2001)

    MathSciNet  ADS  Google Scholar 

  36. 36.

    Albeverio, S., Fei, S.M.: A note on invariants and entanglements. J. Opt. B: Quantum Semiclass Opt. 3, 223 (2001)

    MathSciNet  ADS  Google Scholar 

  37. 37.

    Laustsen, T., Verstraete, F., Van Enk, S.J.: Local vs. joint measurements for the entanglement of assistance. Quantum Inf. Comput. 3, 64 (2003)

    MathSciNet  MATH  Google Scholar 

  38. 38.

    Yu, C.S., Song, H.S.: Entanglement monogamy of tripartite quantum states. Phys. Rev. A 77, 032329 (2008)

    MathSciNet  MATH  ADS  Google Scholar 

  39. 39.

    Goura, G., Bandyopadhyayb, S., Sandersc, B.C.: Dual monogamy inequality for entanglement. J. Math. Phys. 48, 012108 (2007)

    MathSciNet  ADS  Google Scholar 

  40. 40.

    Zhu, X.N., Fei, S.M.: Entanglement monogamy relations of qubit systems. Phys. Rev. A 90, 024304 (2014)

    ADS  Google Scholar 

  41. 41.

    Jin, Z.X., Fei, S.M.: Tighter entanglement monogamy relations of qubit systems. Quantum Inf. Process. 16, 77 (2017)

    MathSciNet  MATH  ADS  Google Scholar 

  42. 42.

    Jin, Z.X., Li, J., Li, T., Fei, S.M.: Tighter monogamy relations in multiqubit systems. Phys. Rev. A 97, 032336 (2018)

    MathSciNet  ADS  Google Scholar 

  43. 43.

    Kumar, A., Prabhu, R., De Sen, A., Sen, U.: Effect of a large number of parties on the monogamy of quantum correlations. Phys. Rev. A 91, 012341 (2015)

    MathSciNet  ADS  Google Scholar 

  44. 44.

    Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    MathSciNet  MATH  ADS  Google Scholar 

  45. 45.

    Adesso, G., Serafini, A., Illuminati, F.: Multipartite entanglement in three-mode Gaussian states of continuous-variable systems: quantification, sharing structure, and decoherence. Phys. Rev. A 73, 032345 (2006)

    ADS  Google Scholar 

  46. 46.

    Giorgi, G.L.: Monogamy properties of quantum and classical correlations. Phys. Rev. A 84, 054301 (2011)

    ADS  Google Scholar 

  47. 47.

    Prabhu, R., Pati, A.K., De Sen, A., Sen, U.: Conditions for monogamy of quantum correlations: Greenberger–Horne–Zeilinger versus \(W\) states. Phys. Rev. A 85, 040102(R) (2012)

    ADS  Google Scholar 

  48. 48.

    Salini, K., Prabhu, R., De Sen, A., Sen, U.: Monotonically increasing functions of any quantum correlation can make all multiparty states monogamous. Ann. Phys. 348, 297–305 (2014)

    MATH  ADS  Google Scholar 

  49. 49.

    Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A. 65, 032314 (2002)

    ADS  Google Scholar 

  50. 50.

    Kim, J.S.: Negativity and tight constraints of multiqubit entanglement. Phys. Rev. A 97, 012334 (2018)

    ADS  Google Scholar 

  51. 51.

    Kim, J.S., Sanders, B.C.: Generalized \(W\)-class state and its monogamy relation. J. Phys. A 41, 495301 (2008)

    MathSciNet  MATH  Google Scholar 

Download references


This work is supported by the NSF of China under Grant No. 11675113, and Beijing Municipal Commission of Education under No. KZ201810028042.

Author information



Corresponding author

Correspondence to Zhi-Xiang Jin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jin, Z., Fei, S. Finer distribution of quantum correlations among multiqubit systems. Quantum Inf Process 18, 21 (2019).

Download citation


  • Monogamy relation
  • Hamming weight
  • Polygamy inequality
  • Multiqubit systems