Quantum image edge extraction based on classical Sobel operator for NEQR

Abstract

As the basic problem in image processing and computer vision, the purpose of edge detection is to identify the point where the brightness of the digital image changes obviously. It is an indispensable task in digital image processing that image edge detection significantly reduces the amount of data and eliminates information that can be considered irrelevant, preserving the important structural properties of the image. However, because of the sharp increase in the image data in the actual applications, real-time problem has become a limitation in classical image processing. In this paper, quantum image edge extraction for the novel enhanced quantum representation (NEQR) is designed based on classical Sobel operator. The quantum image model of NEQR utilizes the inherent entanglement and superposition properties of quantum mechanics to store all the pixels of an image in a superposition state, which can realize parallel computation for calculating the gradients of the image intensity of all the pixels simultaneously. Through constructing and analyzing the quantum circuit of realization image edge extraction, we demonstrate that our proposed scheme can extract edges in the computational complexity of \(\mathrm{O}({n^2} + {2^{q + 4}})\) for a NEQR quantum image with a size of \({2^n} \times {2^n}\). Compared with all the classical edge extraction algorithms and some existing quantum edge extraction algorithms, our proposed scheme can reach a significant and exponential speedup. Hence, our proposed scheme would resolve the real-time problem of image edge extraction in practice image processing.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

(Figure adapted from [42])

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

References

  1. 1.

    Yan, F., Iliyasu, A.M., Le, P.Q.: A review of advances in its security technologies. Int. J. Quantum Inf. 15, 1730001 (2017)

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Yan, F., Iliyasu, A.M., Venegas-Andraca, S.E.: A survey of quantum image representations. Quantum Inf. Process. 15(1), 1–35 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. 3.

    Feynman, R.: Simulating physics with computers. Perseus Books 21(6), 467–488 (1999)

    MathSciNet  Google Scholar 

  4. 4.

    Deutsch, D.: Quantum theory, the church-turing principle and the universal quantum computer. Proc. R. Soc. Lond. 400(1818), 97–117 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. 5.

    Shor, P.: Quantum theory, Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, pp. 124–134 (1994)

  6. 6.

    Grover, L.: Quantum theory, A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium on Theory of Computing, pp. 212–219 (1996)

  7. 7.

    Iliyasu, A.M.: Quantum theory, towards the realisation of secure and efficient image and video processing applications on quantum computers. Entropy 15, 2874–2974 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. 8.

    Iliyasu, A.M., Le, P.Q., et al.: A two-tier scheme for greyscale quantum image watermarking and recovery. Int. J. Innov. Comput. Appl. 5(2), 85–101 (2013)

    Article  Google Scholar 

  9. 9.

    ILugiato, L.A., Gatti, A., Brambilla, E.: Quantum imaging. J. Opt. B Quantum Semiclassical Opt. 4(3), 176–184 (2002)

    Article  Google Scholar 

  10. 10.

    Eldar, Y.C., Oppenheim, A.V.: Quantum signal processing. IEEE Signal Process. Mag. 19(6), 12–32 (2001)

    Article  ADS  Google Scholar 

  11. 11.

    Schutzhold, R.: Pattern recognition on a quantum computer. Phys. Rev. A 67(6), 062311 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  12. 12.

    Venegasandraca, S.E.: Storing, processing, and retrieving an image using quantum mechanics. Proc. SPIE Int. Soc. Opt. Eng. 5105(8), 1085–1090 (2003)

    Google Scholar 

  13. 13.

    Venegasandraca, S.E., Ball, J.: Processing images in entangled quantum systems. Quantum Inf. Process. 9(1), 1–11 (2010)

    Article  MathSciNet  Google Scholar 

  14. 14.

    Latorre, J.I. : Image Compression and Entanglement. arXiv:quant-ph/0510031 (2005)

  15. 15.

    Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10(1), 63–84 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. 16.

    Zhang, Y., Lu, K., Gao, Y., et al.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12(8), 2833–2860 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. 17.

    Zhang, Y., Lu, K., Gao, Y., Gao, Y., et al.: A novel quantum representation for log-polar images. Quantum Inf. Process. 12(9), 3103–3126 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. 18.

    Li, H.S., Zhu, Q., Song, L., et al.: Image storage, retrieval, compression and segmentation in a quantum system. Quantum Inf. Process. 12(6), 2269–2290 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. 19.

    Li, H.S., Zhu, Q., Zhou, R., et al.: Multi-dimensional color image storage and retrieval for a normal arbitrary quantum superposition state. Quantum Inf. Process. 13(4), 991–1011 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. 20.

    Yuan, S., Mao, X., Xue, Y., et al.: SQR: a simple quantum representation of infrared images. Quantum Inf. Process. 13(6), 1353–1379 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. 21.

    Sang, J., Wang, S., Li, Q.: A novel quantum representation of color digital images. Quantum Inf. Process. 16(2), 42 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. 22.

    Li, H., Fan, P., Xia, H., et al.: Quantum implementation circuits of quantum signal representation and type conversion. IEEE Trans. Circuits Syst. I Regul. Pap. PP(99), 1–14 (2018)

    Article  Google Scholar 

  23. 23.

    Le, P.Q., Iliyasu, A.M., Dong, F., et al.: Fast geometric transformations on quantum images. Int. J. Appl. Math. 40(3), 113–123 (2011)

    MathSciNet  MATH  Google Scholar 

  24. 24.

    Fan, P., Zhou, R., Jing, N., et al.: Geometric transformations of multidimensional color images based on NASS. Inf. Sci. 340, 191–208 (2016)

    Article  Google Scholar 

  25. 25.

    Wang, J., Jiang, N., Wang, L.: Quantum image translation. Quantum Inf. Process. 14(5), 1589–1604 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. 26.

    Zhou, R.G., Tan, C., Ian, H.: Global and local translation designs of quantum image based on FRQI. Int. J. Theor. Phys. 56(4), 1382–1398 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. 27.

    Jiang, N., Wang, L.: Quantum image scaling using nearest neighbor interpolation. Quantum Inf. Process. 14(5), 1559–1571 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. 28.

    Sang, J., Wang, S., Niu, X.: Quantum realization of the nearest-neighbor interpolation method for FRQI and NEQR. Quantum Inf. Process. 15(1), 37–64 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. 29.

    Zhou, R.G., Hu, W., Fan, P., et al.: Quantum realization of the bilinear interpolation method for NEQR. Sci. Rep. 7, 2511 (2017)

    Article  ADS  Google Scholar 

  30. 30.

    Jiang, N., Wu, W.Y., Wang, L.: The quantum realization of Arnold and Fibonacci image scrambling. Quantum Inf. Process. 13(5), 1223–1236 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. 31.

    Jiang, N., Wang, L., Wu, W.Y.: Quantum Hilbert image scrambling. Int. J. Theor. Phys. 53(7), 2463–2484 (2014)

    Article  MATH  Google Scholar 

  32. 32.

    Zhou, R.G., Sun, Y.J., Fan, P.: Quantum image Gray-code and bit-plane scrambling. Quantum Inf. Process. 14(5), 1717–1734 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. 33.

    Mogos, G.: Hiding data in a qimage file. Lect. Notes Eng. Comput. Sci. 2174(1), 448–452 (2009)

    Google Scholar 

  34. 34.

    Iliyasu, A.M., Le, P.Q., Dong, F., et al.: Watermarking and authentication of quantum images based on restricted geometric transformations. Inf. Sci. 186(1), 126–149 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. 35.

    Zhang, W.W., Gao, F., Liu, B., et al.: A watermark strategy for quantum images based on quantum Fourier transform. Quantum Inf. Process. 12(2), 793–803 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. 36.

    Song, X., Wang, S., El-Latif, A.A.A., et al.: Dynamic watermarking scheme for quantum images based on Hadamard transform. Multimed. Syst. 20(4), 379–388 (2014)

    Article  Google Scholar 

  37. 37.

    Miyake, S., Nakamae, K.: A quantum watermarking scheme using simple and small-scale quantum circuits. Quantum Inf. Process. 15(5), 1849–1864 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. 38.

    Jiang, N., Zhao, N., Wang, L.: LSB based quantum image steganography algorithm. Int. J. Theor. Phys. 55(1), 107–123 (2016)

    Article  MATH  Google Scholar 

  39. 39.

    Shahrokh, H., Mosayeb, N.: A novel LSB based quantum watermarking. Int. J. Theor. Phys. 55(10), 1–14 (2016)

    MATH  Google Scholar 

  40. 40.

    Tseng, C., Hwang, T.: Quantum digital image processing algorithms. In: Proceedings of the 16th IPPR Conference on Computer Vision, Graphics and Image Processing pp. 827–834 (2003)

  41. 41.

    Fu, X., Ding, M., Sun, Y., et al.: A new quantum edge detection algorithm for medical images. Proc. SPIE Int. Soc. Opt. Eng. 7497, 749724 (2009)

    Google Scholar 

  42. 42.

    Zhang, Y., Lu, K., Gao, Y.: Q Sobel: a novel quantum image edge extraction algorithm. Sci. China Inf. Sci. 58(1), 1–13 (2015)

    Google Scholar 

  43. 43.

    Zhang, Y., Lu, K., Xu, K., et al.: Local feature point extraction for quantum images. Quantum Inf. Process. 14(5), 1573–1588 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. 44.

    Jiang, N., Dang, K.Y., Wang, J.: Quantum image matching. Quantum Inf. Process. 15(9), 3543–3572 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. 45.

    Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Publishing House of Electronics Industry, Prentice Hall (2002)

    Google Scholar 

  46. 46.

    Gao, W.: Technique of Multimedia Data Compression. Publishing House of Electronics Industry, Prentice Hall (1994)

    Google Scholar 

  47. 47.

    Kirsch, R.A.: Computer determination of the constituent structure of biological images. Comput. Biol. Med. 4(3), 315–328 (1971)

    Google Scholar 

  48. 48.

    Canny, J.: A computational approach to edge detection. IEEE TPAMI. 8(6), 679–697 (1986)

    Article  Google Scholar 

  49. 49.

    Islam, M.S., Rahman, M.M., Begum, Z., et al.: Low cost quantum realization of reversible multiplier circuit. Inf. Technol. J. 8(2), 208–213 (2009)

    Article  Google Scholar 

  50. 50.

    Thapliyal, H., Ranganathan, N.: Design of efficient reversible binary subtractors based on a new reversible gate. In: Proceedings of the IEEE Computer Society Annual Symposium on VLSI, Tampa, Florida, pp. 229–234 (2009)

  51. 51.

    Thapliyal, H., Ranganathan, N.: A new design of the reversible subtractor circuit. Nanotechnology 117, 1430–1435 (2011)

    Google Scholar 

  52. 52.

    Barenco, A., Bennett, C.H., Cleve, R., et al.: Elementary gates for quantum computation. Phys. Rev. A. 52(5), 3457–3467 (1995)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant Nos. 61763014, 61463016, 61462026, and 61762012, the National Key R&D Plan under Grant Nos. 2018YFC1200200 and 2018YFC1200205, the Fund for Distinguished Young Scholars of Jiangxi Province under Grant No. 2018ACB21013, Science and technology research project of Jiangxi Provincial Education Department under Grant No. GJJ170382, Project of International Cooperation and Exchanges of Jiangxi Province under Grant No. 20161BBH80034, Project of Humanities and Social Sciences in colleges and universities of Jiangxi Province under Grant No.JC161023.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ping Fan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fan, P., Zhou, R., Hu, W. et al. Quantum image edge extraction based on classical Sobel operator for NEQR. Quantum Inf Process 18, 24 (2019). https://doi.org/10.1007/s11128-018-2131-3

Download citation

Keywords

  • Quantum image processing
  • Edge detection
  • Sobel operator
  • Real-time problem